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MARKCGV LEABRNING MODELS FOR MULTIPERSCN SITUATIONS, IL.
*
METHEODS OF ANALYSIS—/

by

. e
Patrick Suppes and Richaxd C, Atkinsonrw/

82.1. Introduction. The aim of this chapter is to present those methods

of data analysis which are specific %o the models we consider. Although
some of these methods are standard; they may not be familiar to all readers.
The emphasis is on maximum likelihood methods or variants thereof, which we
shall term pseudo-maximum likelihood methédsn

We first consider, in the next section, meximum likelihood estimates Tor

the learning parameters in the case of noncontingent reinforcement and then

for the two-person interaction situation degcribed in §1.%. Necessarily,
as we shall see, the methods described require the assumption of exactly
bne element in the stimulus set of each subject.

In the third section, the methods of ﬁarameter estimetion are extended
to models which assume more than one stimulus element. The methods develcoped
formally yesemble the maximum likelihood methods of the preceding section

but, in fact, do not have the maximum likelihood property. In this comiext

we also consider a method for estimating Jointly the mumber N of stimull

and the value & of the learning parameter.

* : .

~/ This report assumes familiarity with Technical Report No. 21, which is
labeled "Markov Learning Models for Multiperson Situations, I. The
Theory." The authors are indebted to Mr. J. Merrill Carlsmith who

assisted us in some of the computations reported here.

Ko '
'——/ Cn leave of sbsence from University of California, Los Angeles.
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In the fourth.seetion we consider various X? tests for testing
hypotheses that the transition probabilities of a first order chain are
constant, that (in case the transition probabilities are constant) they
are specific numbers, and that the process is a th order Markov chain
against the alternétive it is ;?h but not Eﬁh order. In this section
:no attempt is made to derive thése tests, for which £hé réader is refefred
te the reéent statistical literature on Markov chains.

Ir the fifth section we give some methods of estimation-—pééuliar to
the models--for making what is "almost"” a maximum likelihood estimate of
.the learning paremeter. .These methods are of perhapé more ﬁheoreﬁical
than practical issue. They.hinge upon first meking a least squares
estimate of the noi diréctly observed transition numbers mij from
state 1 to state j in the fransition-matrix for the multi-element model.

Finally, in the sixth seétion a genéralized coﬁditioning model is
developed in which the single parameter 6 is reﬁlaced By several
.conditioning parameters. Simple maximum likelihood methoés of estimétion

for these new parameters are derived.

$2.2, Maximum Likelihood Estimates. When the states of a Markov chain

are observable and the transition probabilities depend on a real parameter,
'say ® , then it is often not difficult to obtain the maxgimum likelihood
estimste 8 of & .

Keeping_in mind.that we are mainly interested in Markov chairs which

congist of a sequence of response random variables, let 81585500058,
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represent a finite sequence of values of the response random variables
" from trial 1 to n . Let s be the number of subjects. Then the
~

maximum likelihood estimate of the learning parameter 6 1s the number &

(if it exists) such that for all @

=4 =) :
o I~ a
(2.2.1) T £ )(al;ag,,u,,an,'@).?_ T £ ).(al,aegm,an;@') .
o=1 g=1

 In the inequality (2.2.1), f(g)(al,azgooo,an}@) is the probability of
the sequence of responses B 58n0 0058 for subject o when the learning
parameter is 8 . It is important to understand that the notation

81 s8pse0e8 for each o does not imply every subject has the same
sequence of responses. It would be more expliclt, but also more cumbeﬁsome

aig)gaég)go a(U) . Use of the product notation in (2.2.1)

to write: cos
expresgses the assumpbion that the probabilities of response sequences of
different subjects are statisticaliy independento

Consider now for =z single subject f(al,agjaoe,ange) , Wwhere we omit
tewporarily the superscript o . By virtue of the fundamental Markov

property of the procesg, we have:

(2.2.2) f(anlan_l;e)f(an_lIan_E;O)i‘lfZf(a2 ]al;@)f(al;@)=f(a

n,an_l,noo,algg) s

Thus;, suming over trials and subjects, we want to maximize

(2.2.3) " 78:( %.f(g)(am]Iam_l;g)f(g)(al;,@) .

o=1 m=2




o

Let N 'be the number of states in the process; let Pij(@) be -the
probability of golng from state 1 +to state |[J with parameter value €
- let n, . be the observed number of transitions from state i to J
aggregated over trials and subjects (thus the nij are tabulated fyrom
experimental data), let pi(e) be the probability of being in state i
on trial 1 ; and, finally, let n, be the number of subjects in state i
on trial 1 (i.e., here the number of subjects who make response i on
trial 1 ). Substituting this notation in (2.2.3) we may then replace

(2.2.1) byff

¥ ni nij.
) 1
UG NCALICONS

‘ N ni‘A ni.,\
(2.2.14) T p, (@), (@) >
: i X l?’J "—..; J‘El

=2

i,3=1.

Fan
That is, to find & we want to maximize with respect to @

f/ To prevent any confusion we may maké complietely explicit the use of
this notation. Suppose, for-instanceg there are two subjects with
the following sequences of responses for the first five trials:
12121, 11222 , where 1 indicates response Al and 2 indicates

response A, . Then clearly n = 2 ,n, = 0 , because both

2 2
subjects made the Al response on the first trial, and, as may
easily be checked, nll =1, n12 =3, n21 =2 and n22 = 2,

The use of the nij' as exponents in (2.2.4) comes from the simple

equabilon:

2 3 -
P1P11P12P21Pon T P1PyoPoy P1oPoy PPy 1Py oPeoPen )




e

N ni ni.

T » (9)pi.J(@) s
, j
i,j=1

but the value of & which maximizes this expression also maximizges the
log of it, and in many cases the latter is easier to work with. Consequently

we shall usually seek to maximize

o2 = 2 . s . s N
(2.2.5) L(8). : [ni log pi(e) + ? B, 5 log le(Q)]
Ordinarily the funetion L(6) will have a local maximum, and 50 we can
find © aes an appropriate solution of

t B
nipi(@) ni.p..(g)

dL(e) _ JFig _
(2.2.6) 2 = ? [ pi(g) + ? Pij(g) l= 0

?

where p' i1s the derivative with respect to & of p .

We now apply the general results (2.2.5) and (2,2c6) to the one-element
model for the noncontingent case; discussed in Chapter 1. The transition
matrix .(pij) is given by (1.3.7); moreover, if we begin with trial 1 ,

pi(Q) is independent of © , and so we obtain from (2,2a6)

ar(e) _  Ppa(t=m)  mppy  my o DT

(2.2.7) e T "1t e *o "I-ex”

0

and this simplifies to the gquadratic equation given in the following theorem.
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Thecrem. The maximum likelihood estimate of & for the cne-element

model in the noncontingent case is a root of the eguation:

Cy o
(2.2.8) 4-n214-n22)n(1-ﬂ)@ - [n

) R
(n11'$n12 l(l-ﬂ)+ 0. . +1n —knzznj@

1 12 " 21

+ (n 0 .

107" Poy) =

Numerical solutions of this gquation for various experimental dabta are
presented in subsequent chapters. From Descartes’ rule of signs, it
follows that there are no negative roots of (2.2.8), but i% is sometimes
true that a root greater than one, which is a maximom, will be found. The
guestion naturally arises of what inberpretation to place on 8 >4 ..
Clearly such a '6 cannot be interpreted as a probability, even though the
stochastic character of the matfix (1.3.7) may not itself be disturbed

By '@ >1 . It seems to us that the best compromise is probably %o think
of such an egtimate as approximating a true value of © which, as a
frobability, is very close to Qne? However, it has been our experience
that when ’8 > 1 +the overall £it of the model iz usually rather poor.

We ghall return o this point in later chapters.

It is to be noticed that we cannot, in terms of observable guantities,
make.a similar maximum likelihcood estimate of © for the two-~element model
of the noncontingent case, whose transition matrix is given by {1.3.17).
The difficulty is that the states of the Markov chain are uncbservable,

and the sequence of response random variables, which is a sequence of
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observables; is not a Markov‘chainy but a chain of infinite ordsr, that
is, the probability of response; on a given trial depends on all preceding
responses.

The quadratic equaltion (2.2.8) suggests that the maximum likelihood
estimate of © would be the root of a polynomial of higher degree in the
‘zero-sum, twe-person situation described by matrix (10405)u- (For the present,
we shall assume @A = @B in (1.4.5) and thus consider estimstion of a single

parameter,) Surprisingly enough this is not the case. In fact, the estimate

has a much simpler form.

Theorem. If O <a, <1, then the maximum likelihood estimate of ©

for the one-element model in the zero-sum, two~person case is:

PN +n13-+n21-+n24-%n31-+n34-+nh2 +nh3
nll4~n224-n33 +nhu4-nle-+n13 +n21-+n23-+n3l-+n3h +ﬂh2°fﬂh3

(2.2.9) @ =

case
Proof: As in the noncontingenty, pi(g) is independent of © , and

we have from (1.%.5)

aL(e) _ 4 . B8y . nlB(l—al) . HElag'_ Ny ) na&(lwaQ) . n3l(1~33)
ae 1-6 " a0 (1-a)e 8,6~ 1-0 (1-a,)0 (1“33)@

) n33 . n3#a3 . nue(l—ah) . nh3ah ) Dy, .
1-6 a3@ (1-a4)e a),© 1-0 ’

.Simplifying, we obtain:

.n124-nl3-+n214-ngu-fnSli-nsh-fnhe-+nh3 i nlld«n22-+n33"$n%4

e 1-0 =0 -

]
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‘We solve this linear equaticn to obtain the desired resuit.

‘

cr 1 +this estimate is changed in the obvious way.

The simultaneous estimate of 8

(2.2.10)

A B
situation is more complicated. Specifically
BL(QA’@B) ) nll(al—l) . nq n22(a2wl) . B), . Bay
aeA al(@AvgB)+.l- Sp N ag(@- "@B)"' 1-9, 0, 0,
L sl mp o ma(ml)
a3(@A-QB)+-1--=@A 0, au(QA”QB)*'l“ 9,
Ou(6y8) "% LT, Per oo
S@B al(@A-eB) +1-8, o, o aE(GA_@B)+ .1_ R
) n33a3 . l‘l‘?))_'_ . IlJ+3 ) nll-ll-al!_ -0
as(QAfeB)+ulu 6, g 8y g(8;-85)v1-0,
The maximum likelihocd estimates of @A and @B are determined by the

and &

e a.
1

is

0

in the zero-sum, two-person

simultaneous solution of the above equations.

Maximum likeiihood estimates for conditioning parameters in other two

o

and three-person interaction situations are presented in later chapters.

52.3.

Pzeudo-Maximum Likelihood Estimates. When more than one stimuzlius

‘element is assumed, the problems of estimating the parameter & are

considerably more difficult.

Ag has already been remarked in Chapter 1

the states of the Markov chain are the possible states of conditioning of

the stimuli, and these states are unobservable. The observeble sequence of
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response random variables < glgégyooogéhgone > 1is itself a chain of
infinite order, that is, the probability distribubion on trial n of én
depends, not just on the response on trial n-1 , but onr that of all
preceding trials. As in the case of the one-elemenﬁ model, (2.2.1) defines
the maximum likelihood estimate © 5 5ut (2.2.2) no longer holds. The
approach of the pseudc-maximum 1ikelihood method of estimstion is directly
to use (2.2.3) as the expression to maximize even though the resulting
estimate is not the maximm likelihocd one. The Justification of this
approach is that it represents a crude bult computakionally practical
approximation of the maximum likelihood estimate. If the transition

numpers n,, and the accompanying theoretical expressions

ijk ] m-1"m~ ”’ 0)

are used; a still betiter estimate is obtained at the cost of considerably
_@Dre‘worko -8imilarly, use of the transition numbers nijkl yield a still
better approximation. Let us call (2n2°3) the firet order pseudo-maximum
iikelihood estimate 0% , and the estimate which uses two preceding trials
the second-order estimate, and so on. It iIs not difficult to show that
for all the models considered in this book the n-order pseudo-maximum
likelihcod estimates rapidly converge to the maximumAiikelihood estimate Q.
This result follows directly from showing that the chains of infinite order
constituted by the response random variables satisfy the conditicns for
- convergence given in Lamperti and Suppes [1959].

As a simple exsmple, we compute the (first order) pseudo-maximum

likelihood estimate ©% for the two-element noncontingent model

discussed in $1.3. To begin with, we need the probabilities
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(2.3.1) im  P(A . = lién = 3)
for i,j = 1,2 . To abbreviate notation in derivatlons we replace the
random variable notation ! = 1' by the eveﬁt notation A, '
=+l 1,041
ete., that is, A, is the event of response 1 omn trial n+l .
1,0+l

“Bimilarly, 'Ekgn is the event of reinforcing event Ek on trial o ;
Moreover, for purposes of subsequent generalization and to 1llus-
trate some technical simplifications which are often useful, we shall
consider the two-element noncontingent model in tewmms of a Markov chain
whose states are the number of stimuius elements conditioned to the Al
response. Thus there Wiil be three states, 0, 1; 2, rather than the
four gtates 0O, {sl} s {52} 5 {sl,sg} of the process defined by (1.3.17).
From the discussion in 9153 it should be obvious how to construcht the
trees of the Markov chain in these three states, and we simply give hexe

"the transition matrix.

0 1 2
0 1-8x ox 0
1. 1 1
(2.3.2) 1 50(1-m) 158 5 o
2 0 6(1l-m) 1-0(1l-5) -

We now use (2.3.2) to compute the gquantities (2.3.1). Again, for
notational purposes, let Ci'Il be the event of 1 stimulus elements
2

conditioned to Al on trial n . We first note that




w1l

2

(2,3:,3)_ P(Al,n+l ]Al;n) = % P(Al,mlci,ml IAl,,n)

il

|a

P(Al,n+llcl,n+l)P(cl,n+l- l,n) +

P(Al,n+llce,n+l)P(02,n+lIAlgn) ’

because
'P(Alyn+llci,n+lA1,n) =-P(Algﬂ+llcisnfl)'s
which is a_consequence of the "independence of path" axioms, and
P(Al,n+llcé,n+¥) =0

CAlsp, from the sampling and response axioms, we have that

| 1
. P(Al,n+llcl,n+l) )
(2.3.0)
P(Al,n+ll02,n+l) =ll 2
~and thus (2.3.3) simplifies to:
1
(2.3.5) P(Al,n+l JA:L,n)"' §'P(Cl,n.+l ‘Al,,n) +'P(ce,n+1“i,n) -

Our problem now is to compute the two quantities on the right of (2,365)o

We first observe that
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_ 2

13n+l[Al,n) = 2;% P(Cl,n+lAl,nCi,n)/?(Al,n)

{2.3.6) P(C

= P(Cl,n+llAl,ncl,n)P(AlynIcl,m)P(Clyﬂ)/P(Aljn)

+ P(C c )P(Al’nlcgyn)P(Cgsn)/P{Al’n) ;

A
1,n+l! l,n2,n

where again we have eliminated the state C_. because P(A IC ) = .
0 le,n  Gyn’
Now
(2.3.7) P(Cl,n+llAl,nCl,n) = P(clsn+llElpnAljncl:n)P(El’n) +
P(Gljn+l[EE,nAl,ncl,n)P(EQ,n)
) = 5%+ (1-0)(1-m) ,
for in order for Al to occur, the sampled element must be conditioned
, 2t
to Al . ‘Whence if El occurs; regardless of the effectiveness of
conditioning, the new conditioning state is the same. However; if Eé

occurs the conditioning stays the same only with probability (1 - 8) .
Now for the second term on the right of (2.3.6), we can pass from Cy
?

to Cl el cnly if an Eé reinforcement cccurs to reduce the number
E . i

of stimulus elements conditioned to Al . Thus

(2.3.8) e{C = 6(1l-x) .

l,n+l[A1,n02,n)

It easily follows from the asymptotic results in $1.3 that
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, 12
11m.coyn = {Llemn)
(2.3.9) < lim.Clyn = 2w (1-x)
. 2
\ 1im CE,n = 7

and of course l1im P(A, )= n . We thus infer from (2.3.4), (2.3.6) -

in
(2.3.9) that

(2.3.10) lim P(Cljn+l]A1’n) [n-h(lae)(l~n)1°%-°2ﬁ(l-ﬂ)/ﬁ%—@(l—ﬁ)ﬁ2/ﬁ

a{l-m)+ (1-@)(1--1{)2+ 6 m{l-=)

' We next compute lim P(Ca,n+llAl,n) : It is clear that given the A,
response on trial n , the sampled stimulus elementron trial »n must be

conditioned to Al and thus to have event C it is necessary to

2,0+l

» conditioning state C only can

have C . Thet is, given A 2 ntl

20 1,n

be reached from C .« Thus
2,0

(£.3.11) 1lim P(C

‘2,n+lIAl,n):zlim B(C

2,n+llAl,n02,n)P(Al,n1623n)P(02,n)/P(Al,n)

L+ (1-0) (1) T2/

[

g @ (Llen) .

Going back now to (2.3.3) and applying (2.3.%), (2.3.10) and (2.3.11),

we have:




.

Al,n) =

- g (1-8)(1-7)

2 7

(2.3.12) lim P(A Sla(Lom)+ (1-0)(1-n)+ @ 7 (1om) 1+ 7~ & (l-n)

l,n+lﬂ

which is the desired result. From considerations of symmefry, or by dlirsct

computation, it is easlly established that

. X . {1-0)s
(2.3.13) Lim P(Agsnﬂg_lng;n) = 1ot
and thus also
1im P( l ) = T m(_];:_@ﬂ
Al,n+l~A25n 2
(2 93014) )
. » (1-8)(L-=)
lim P(Ay o) lAl’n) o 2 .

Following then (2°2¢7) of the preceding section, the first order pseudo-

maximum likelihood estimate 8% d4is = solution of the equation

ar*(e) _ 0y (1-) o it BT

(2:3.15) =5 = - Ty w-e(n) * (e) * (w+e) ~ B (ir)7 =

0

which gimplifies to the quadratic equation of the following thecrenm.

Theorem. The first order pseuvdo-maximum likelihood estimaste &% for

the two-element model in the noncontingent case is a root of the equation:
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> 2 2
{2.3.16) (nll+-n124=n214=n22)ﬁ(l—ﬁ)9 - 2[nll(l-n).+—(n124~321)(ﬁ -~ w4+ 1)

+ ngan’glg =-].’Lll(1-=:n’)(2—ﬁ'€) + (n12+ ngl)(l+rc)(2-3t) - nggzrs(l-m)‘ =0 .

The stabistical properties of this method of estimation need investigation.
However, it can Pe shown that the method is consistent for all the models
considered in this book.

Equations (2.3.12) and (2.3.13) are special cases for N =2 of more
.géneral results for arbitrary N . In order to use pseudo-meximum. likelihood
methods to estimate jointly N and 9 , it is necessary to derive the

general result.

Theorem. For the N-element model (with equiprobable sampling of

stimulus elements), in the noncontingent case

i)

(2.3.17) i p(a, .8 )= w4 {1-6)(1-x)

it

A, ). l-ﬂ+=££%§l§

(2.3.18) lim P(A2 -

s+l

Proof: We simply generalize the method of attack used for N=2 .

Corresponding to (2.3.3), we have
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_ N ©¥
(1) P(Al,n+lel,n) = %é;igég P(Al m+101 ntl l n J,n)/ (A‘ n
=2 P(Al,;+llciyn+l)P(c ,n+1lA;gncgg )

1]
)
P(A13n+l[cjjn’P(cj,n)/P(Al,n)

Anslogous to (2.3.%4), we know that

(2} P(Al’nlcjsn) =

=lew
w

and corresponding to {2.3.7), {2.3.8) and {(2.3.11)

0, | 1> 3

T+ (1-8){(1-x) , i
(3) P(ci,nx{-llAl,nGjﬁn = @(1_ﬁ) , §oe= gel

0, i< j-1

\

The results in §1.3 for W = 2 easily gernerslize to show that;

By o,
() lim P(Ci,n) ={-, (1)1

1

where

it . :
. )= ETT%EIYT » the binomial coefficient. Substituting (2} and

(3) in (1), we infer:
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1 N .2
> % [x+(1-8)(1-m) ]P(cisn)

(5) 'P(A_j_:,n-s«l ]Alsn) B P(Al n’ li=l N

N ./
+ > i{i-1) @(l-:t.)P(Ci n)

i=1 RE

and thus using (4) as n = o

lim. P(A:L w1 IA]_ n) - J‘l,’.+(l—9)(l#-11’) E 12 ﬂi(lwn)m-—i
5 ] JT.N2 1
) N
o(1- Cla ( i -3
' arN; {ii_l(lml) 11 (1-::)' :

Now the first summation is just the second raw moment of the binomial
distribution with parameter = , and the seccnd summation is the second

raw moment minus the mean Na ; whence

1im P(A

1,n+1 [Al,n) - n+(l:;2)(}-x) [+ Nn(l—ﬂ)].+9£;—’2’fl NP+ Ner(L-) - N

= -Il\fhr(NH 1= x)+ (L-m) {(1-9)-(st+ 1-m)+ 6 w(N-1) } ]

=%Mﬁ+l—9-ﬁ+9ﬂ]

(1-8){1-xn)

= T+ T 5

which estsblishes (2.3.17), and the argument for (2.3.18).is completely

symmetrical with = and J1-w interchanged. Q.E.D,
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It is perfectly straightforward %o use (2.3.17) and (2.3.18) to make =a
Joint pseudo-maximum Iikelihcood estlwmate ofx @ and N , exactly as was done
for ® with N.= 2 . However, the equation which arises from differentisting
1%(0,N) with respect to N is a polyromial of high degree, and it is
desirable to have a simpler approach. Applying the methods Jjust used, we

-may establish for the N-element model that

) _ a(L-n)
(2.3.19) lim P(Al,n+llEl,n) = S
and.
e
[s] 2 . = - =
(@f3u20) | lim P(AQ,n+llE29n) =1-%+ 5 .
‘Let
———
(2.3.21) N
- 8
y = N ®
Then
|
(2.3.22) X+ y
_
o=

We may use (2.3.17) and {2.3.18) to make a pseudo-maximum likelihood estimate

of x , and (2.3.19) and (2.3.20) to estimate y . For =x , we have
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A19n+1 A2gn$l
A, w4+ x(lom) (1-x)(1-x)
i.n _
- (2.3.23)
Aggn (L-x)= lemtxm 5

which is just the transition matrix (1.3.7) for the one-element model with
.8 repilaced by 1 -~x , whence the guadratic equation (2.2.8) yields the
pseudo-maximum likelihood estimate of 1 -x , and thus of x . This is
particularly convenient if, as we have done, maximum likelihood estimates
of © for the one-element model are computed, Tor 8 = 1-x* .

For y , we have

A A

Lyn+l 2,ntl
Elgn 7+ y{1-5) (1-y){1-=)
(2.3.24)
'Eeﬂn (1-y)m l-gbym .

Because the matrix (2.3.24) is Just like (2.3.23) with y replacing x ,

the same formal remarks hold. Namely, the quadratic equation (2.2.8) may
yield the estimate of 1~y and thus of y . Of course, in this case the
transition numbers nij are different from those used in making the maximun
likelihood estimate of @ <f£or the one~element model. In fact, 1t should he
noticed that (2.3.24) does not even approximate a chain of infinite order, for
the ™transitions" are from reinforcements to responses. Applications of this

method for jointly estimating © and N are to be found in Chapter 10.
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§2.4, Some Statistical Tests for Markov Chains. There are four

standard tests which we shall use in analyzing experimental data for Markov
characteristics. The first tests the hypothesis that the Markov process

is stationary, that is, that the tfansition probabllities are independent
of n , the trial numberf The second is concerned with the order of the
Markov chain, for example, first order versus second order. The third test
is one for gocedness of fit. The fourth ftest deals with the hypothesis of
.whether or not response protocols for different subjects can be viewed as

a collection of samples from the same rth order Markov chain. .The
derivation of these tests and an analysis of their statistical properties
are given in Anderson and Goodman [1957]; also relevant are Bartlett 11951 ]
and Hoel [1954 ]. For our purposes it will be sufficient to present a brief
description of the tests.

Stationarity. Let pij(t) be the probability of transition from

stbate 1 on trial +t -1 +to state J on trial +t . The null hypqthesis
to be considered is that pij(t) =Py that is, that the transition
probabilities of the Markov process are independent of t . The Xemtest
of homogeneity 1s appropriate, and we calculate for each row i of the

transition matrix-

5 ng () ng, )" 24
otk KT = - - el
(2.4.1) 1= 2 ny(t-1) [n.(t-l) n, / .
tsed i i i
where n.,.(t) denotes the observed number of cases in state i at ©~1

i]
and state J at t.. Further, let




If the null hypothesis is true, -X? has the usual limiting distribution with
-(m~l)(T—l) degrees of freedom, where m ig the number of states and T 1is
ﬁhe nunber of trials. In the experiments reported in subsequent chapbers

the number of pairs of subjects; or tripleé of subjects, as the case may be,

ranges between 20 and 40 , which is not sufficient to yield stable estimates

n..(t)
~ _ _igd ro gao 1 :
of .pij(t) = n—j—i T1) for individual trials + . . Consequen_tlyﬁ our procedure

is 0 sum over blocks of trials, in which case t now represents a particular
block of trials.
Finally, it may be shown that the set of X? are asympbotically

independent, whence the sum

2 2
(2.4.2) X5 = ’% X:

has the usual limiting distribution with m(m-1)(T-1) degrees of freedom.
Order. The Markov character of the sequence of response random variables,
or of other sequences of random variables, may be tested directiy without

recourse to details of stimulug sampling theory. Agairn a -Xgntest of
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homogeneity is apprbpriatea To begin with, suppose our nuil hypothesis

is that the outcomes of trisls are statistically independent {zero order

process) against the alternative bypothesis that the process is a first
order Markov chain. A test of this hypothesis can be made by compubing

the sum

2

/

B

. n,

= T

n, N
i

n,
_d
N

(2.4.3) X2=Zni

where nij and n, are as defined above, and

Again, XE has the usual limiting distributicn with (m—l)2 degrees of
freedom.

A second null hypothesis is that the process is a first order Markov
chain againgt the hypothesis that it is a second order chain. Rejection of
the null hypothesis in this case would mean that a better prediction of the
response probabiliities can be made by observing the two immediately
preceding responses rather than simply the single immediately preceding
response. Results of thisg test are of particular psychological interest

because there are two main directions cne can go in developing models which

are more adequate than the one-element ones. The possibility most discussed
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by us is the development of mulii-stimulus-element models which are first
order Markov chains in the unobservable states of conditioning but not in
the subject's responses. -Another poséibility is to develop higher order
Markov chaing which still have observable states.

The first order vs. second order hypothesis can be tesﬁed by

computing the sum

(2.4 ,0) w2 n, .

i,,8 9

n,. ;
1J d

-Whefe .nijk is defined similarly to nij-a ;If the null hypothesis is true,
X? has a limiting distribution with m(m-l)2 degrees of freedom. Ikt is
straightforward to generalize (2.4.4) to a test of r-1 order vs. r
order (see Anderson and Goodman [1957]). It may be noted that the various
ratlos which occur in these tests are actually the maximum likeliheod
estimates of the transition probabilities. Thus i&j = hij/ni 5

o~

Pijk = nijk/nij s and so on. Also, these order tests are predicated on

the assumption of stationarity, although this is not necessary.

Goodness of fit. For all of the Markov chains considered in this bock

the transition matrix depends on at least one conditioning parameter.
:Howevers after the parameters have been estimated by the methods discuseed

in preceding sections, it is then possible o make a X?-test of the
-goodness of fit of the predicted transition matrix to the cbserved transition

matrix. This test would seem to be restricted to one-slement models, which




ol

are the only ones having cbservable states. However, in the next section
1t is shown that this Is not the case, and that the transition numbers for
rmulti-element medels may be inferred from cobserved data even though they
are not directly obhservable.

Yor simplicity of exposition, let E; be the estimated parameter,
let pij(aj be the theoretical transition probabilities based on @\
Az before, let 'Bij represent the observed transition probabilities as

estimated from the transition numbers nij - Then under the null hypothesis

2 o~ ASEVERN ~
(2.4.5) X =S ni(pi., ~p.1.(9))/P..(@)
Sy J ij i3
1od
has the usual limiting distribution with m(m—l)~ 1 degrees of freedom.
(If q parameters are estimated, then there are m{m-1)-q degrees of

freedom.) When it is convenient, (8) in the denominator may be

Pij
replaced by %ij without seriously affecting the test. For example, if

.fﬁij % 0 and pij(é)-z 0 , such a substitution is convenlent. This
situation occurs in the transition matrix (15405)_for Zero-sun Lwo-person
games .

Although this goodness of it test has the virtue of providing an
overall measure of the adequacy of a particular Markov chain with respect
to a given experiment, it would be a mistake to construe it as providing
a test of the goodness of fit of stimulus sampling theory to the data of

the experiment. Consider, for example, the sequence of response random

variebles in the one-element model with noncontingent reinforcement. As
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‘we shall see in Chapter 10, the fit of this Markov chain to datz may be
exceptionally good, and yet The additional prediction from the theory that
P(Al,n+l El,nAl,n) =1 will be clearly contradicted. The implication of
this last prediction is that if we take the Markov chain whose states are
the possible pairs of responses and reinforcements, the fit to data will
not be as good as that of the Markov chain consisting only bf the sequence
of resporse random variables. On the other hand, poor £it of the sequence
of response random varisbles in the one-element model does not entail
rejection of_the theory, for a mglti-element'mpdg;_may”fip:¢stid¢r§b;y
better. The point of these réﬁarks‘ié £o.cautioﬁ agéiﬁstfméking too éimple
an interpretation of' the relation between the Xe goodness of £it test and

the fundamental theory of stimulus sampling.

ldentical Processes. .Often, a question of major interest in analyzing
learning studies is whether or not the subjects in a particular experimental
group can be considered equivalent. More specifically, whether the response
protocols for different suﬁjects can be viewed simply as a collection of
'éamplés from the same rth order Markov chain. We will consider the tesk
only for first order Markov chalins but the generalization to rth order
-éhains.is obvious.

Let 3§?) == ngg)/ngh) denote the maximum likelihood estimate of the
firét order transition probability pi?) for the process from which

sample h (h=1,2,...,5} was obtained. We wish to test the null

() _ L for n= 1,2 ..55 ; that is, that the s

hypothesis that pij 4

Processes are identical.
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Again, the X test of homogeneity is appropriate; that is; to test

this hypothesis, we calculate

2w (n);a(m) A2 ()
(24.6) . Y 2ong LR eyl eyt

_ (<) _ (n) ) () ") _
where nij = 2; nij and D =0, / Ei n, o Xi has the usual

'limiting distribution with (s =1)(m -1) degrees of freedom. Finally,

(2.%.7) a5

o
‘has a limiting X -distribution with m{m-1){s-1) degrees of freedom.

*§2.5, Estimation of Transgition Numbers in Multi-Eiement Models. It

 has already been femarked several times that the states of conditidning of
stimuli are not observable when more than one stimulus is available for
sampling. The literature of stimuius sampling theory would incline one %o
think that the transition numbers associated with these uncbservable states
of conditicning alsc are not idéntifiable, That is, that they are not
uniquely determined by the observed response data. Fdrtunately this is

not so for the models we consider in this book, and in fact the transition

numbers for the conditioning states can be estimated independent of © .

*
—/ Starred sections may be omitted without loss of continuity by readers

interested only in the main lines of development.




27~

This is a particularly desirable state of affalrs, for the estimated
numbers may then themselves be used to estimate € by the maximum
likelihood methods of §2.2. (It is not difficult to show (see Anderson
and Goodman [1957]) that these transition numbers form a sek of
gufficient statistics.)

We now carry through this anaylsis in detail for the two~elément
models in the noncontingent éituation and also in the zero-sum, two-person
situation. Naturally, the simpler of the two will be considered first,
that is, the noncontingent case. We shall continually refer to the
ﬁransition matrix (2.3.2) for the two-element model. Far.uhiformity of
notation, let nij be the transition numbers for the observed responses
Al and AE , and let mij be the transition numbers for the unobserved
states 0, 1 and 2 of the Markov chain. OQur first problem is to write
an equation for each nij in terms of the mij . In order %o do this it
ig necessary to compubte the conditional probabilities P(A.i A

et i jﬂnlck3n+lc£3n) ?

where 1i,J = 1,2 and k,£ = 0,1,2 . For simplicity, we replace Cl 0 by
2

ln s to designate the state with exactly one element conditioned to Al s
and similarly, for 'CO n and 02 n - Beginning with the transition
b4 2 :

number n for A

11 13n+lAl,n s We note that the state of conditioning on

neither trial can be G , whence

2

(2.5:1) Py % iZJ.ml miJP(Alsnd-lAlyn["jn+11n) :
=




Clearly

(2.5.2) ' P(A

and by elementary probability theory

(2°5°3) P(Al,n+lAl,nlln+lgn) =

D8

l,n+lA1,n 2n+l2n

P(Al,n+l--lln+l) (1 n+l l 51 n)P(Al 12 )///%( +l

Now P(1 +l[2 ) is given by the matrix (2.3.2), and by (2.3.8),

+l Algn a = 9(1l-x) , whence

(2.5.4) P(A

On the other hand,

(2.5.5) P(A

l,n+lAl,n12n+lln

=2 - g(1-m) 21, e(1-x) = %

l,n+lA1,n-ln+12n) T2

for in order to mske an Al response on trial n the one element

conditioned to this response must be sampled and thus the other element

(which is not sampled and not conditioned to Al)

condltioning. Therefore, P(2
once from this.

For the fourth term, we have

P(A 1) = P(A

l,n+lAl,n|ln+l n ( 1,n+1]-ln+1)P(l

n+l

A

l,nln)P

cannot change its

n+l[Al’nln) =0, and (2.5.5) follows at

(a, /20, 11)




Now by virtue of. (2.3.7)

and we conclude:

(2.5.6) P(A ) = % *[m+ (120)(1-w)] % J (- 32*—@) .

l,n+lA1;nlln+lln

Combining (2.5.1) - {2.5.6), we obtain the equation for n,, and by similar

arguments @he quat;Ons for Typ 2 By and n‘22 o thy are as :ollqws:

R

, ! 1| n+(1-8)(1-=)
nJB—ém21+mlO+E[ 1 T
: 1 - 'é'@
(2.5.7) ﬁ - o

_ 1 1[ 1-0x

Doy = Mp + 51 * E{ 1 ]mll
- 16
>
AU S &

oo = Moo T 2% TR Tl | P
1-3¢

It is necessary to cqmbine the four equations of (20507) in order Lo

‘eliminate. @ . We obtaln the four equations:




1 1 1
Byy ¥ Tpy T Oy + 3,y + Iy + 500y 5T
n 4+ n =m + 'J;Hl + m + ;L-m + 1
11 7 Ppp T Mo T ooy T Egn T B T 2™
(2.5.8) <
n_ +n =a_ o+ + +tin 4+ oim
12 7 Por T E%1 T Mo T Mo T 3% T BN

ELI—'
+
=

1 1
\ , = S .
Byg # Doy = Flyg + My + Moy + 3G + 504,

Secondly, ncte that for a large number of observations the number of
transitions into a given row of (2.3.2) must approximate very closely
the number of transitions out of the row, independent of the value of © .

Whence we have the two equations:

Moy =

I
=

(2.5.9)
o = Moy -

Thirdly, PlO and p12 stané in a ratio which is independent of © . Thus

(2.5,10) ' . m, = ﬁl;ﬂ“l

10

Mo

Finally, two additicnal linear relations can be obtained by comparing

transition numbers of different rows. From (2.3.2) we see that

P
— =2,
P1o
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whence
| To1 s
(l) = 3
+
oo R o5 T Fo Rl B A -
and
Poy
“===2 ,
P10
whence
) " ™Mo
N~ B T R B B T

From (1), (2}, (2.5.9) and (2.5.10), we infer:

(1-m)(m, 5+ mli T - 2almy i+ my, )

(l-ﬂ)(mlo +m o+ le):' 23{(1&214.- m22) 5

which pair of equations is egquivalent to:

Tog ¥ oy = oy * B0
(2.5.11)

_(l—ﬁ)(mlo o, = 231(1::100.-!-= :mOl) .

The nine equations (2.5.8), (2.5.9), (2.5.16) and (2.5.11) in seven

unknowns may be expressed by the matrix equation
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(2.5.12)
1 1 1 .\
2 > 1 2 * B0 g * 8oy
1 1 1
1 > 5 2 1 Ty Myt Bop
1 i i |
2 L 2 1 5 %o | 'J Dypt Oy
1 1 1
L 2 L 5 5 1 xI Do+ o
i
‘ ;
1 -1 ]Ille I! = E O
SR | my \ 0
J
T =1 m22 / 0
\ 1 1 -1 -1 0
2% on ﬁwl -1 -1 ’ 0 .

We want to use the method of least squares to solve this system of equations
for the coverdetermined variables mij .  However, the total number
N=2Z nij = 7, mij of Ttransitions is not a number which is to be estimated

in the least squares procedure for this number is known with probabllity

cne. In order to avoid having Z mij # N , we replace the equation

by

(2.5.13) | | | N = Z m,
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-either of which is a consequence of the other together with the remaining
three equations of {2.5.8). -We then use (2.5.13) to eliminate one of the
.seven variables; say Dy and thereby guarantee exact satisfaction of
(2.5.13) by the least squares estimate of the m s The result is the

following matrix equation

(2.5.1%)
1 1 1
) 7 1 ) L Bs, \ Byt By
1 1 1 _
5z 2 7 ™o S ER
1 1 1 1
z L 2 1 > o9 Dyp 05y
!
1 -1 ml2 = e
- f
T -1 m22 0]
1 1 1 o 2 iy
1t 14w 14w
2 o1 2 1 1 J N ?
which can be writien as
(2.5.15) QM =K ,

vhere @ is the 8 x 6 matrix, M the column vector of mij and K
the column vector on the right of the equality sign of {(£.5.14). For the
momernt 1t will be convenient to renumber the variables mij as ml P nm6 .

Applying now the method of least squares, we seek Lo minimize
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8 6
2
S(myyeeeomy) = 27 (v, - > g, m,17 .
1 5 T i o ii" 4
Now for j=1,...,6

= = -2 %(k,-2% q..,,m,, )0
émj P T S R
Settling these partial derivatives equal to zerc, in order to minimize

'S(ml,,..,m6) we solve the system of six eguations which may be written
(2.5.16) BM = A

where B =Q'Q , A=Q'K , and Q' is the transpose of the matrix @Q .
 Given these estimated transition numbers mij We may now make a
maximum likelihood estimate of 6 . From the transition matrix (2.3.2),

we see at once that

an(s) T ™ . (mop +myg+mp,+my, ) mypy my, (1-m)

e = l-ew 3 2-6 .1-6(1-x)

~
Setting this derivative equal to zexro, we cbtain 6 as a root of the

following cubic equation:
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(2f5ol7) (—mOO T —mlg-mzl)x(l-ﬂ)e 4 E(3moo+um22)x
%- (m_ _+m . +m,+ Hy +2x -21(2)+ + -2{m_ -+ m )312]92
R o R To RS P R~ TR T Ty oot Mog /T -
+ [2(myy - mpg e - 3(myy 4wyt mpprmy, ) - omyy - 2wy le

+ 2(m014—m10+-m12=%m21) =0 .

This . estimate /@\ may be compared with the first order pseudommé,ximum
likelihood estimate &% of §2°3° Moreover, the X2 gocdness of it test
(2.4.5) may be applied to the 2 x 2 table of transition probabilities

‘ -~
P(Ai,n+llAj,n) for i,3 = 1,2 at asymptote. The theoretical values pij(@)
are given by (2.3.12) and (2.3.13). More interesting still is the spplica-
tion of the X2 test to the Tit at asymptote of the theoretiecal
probebilities P(A, [E A, ) for which the cne-element model is

iyn+lVken Jon .

particularly bad because the re-occurrence of a reinforced regponse is
predicted with probabllity one. Giwven /é\ , We may apply the X2 test To
the following 4 x 2 +table, whose entries are computed at asymptote by the

methods of §2.3:

A Ay
1 kT 1 =
AR 2732 5 "2
" 1-8 i1 8 =
My 1 5+ 27272
{£.5.18) )
1.9 1 ©
AsBy 5 L-3%-3
® T
Aoty z -3
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The test is stringent, for neither the first nor fourth row have any

probabilities which depend on @ . The results of this test are compared
in Chapter 10 with a similar test for the generalized conditioning model .
discussed in the next section. In the two-element model the sequence of
randor variables < éigi’éQEQ”"’éﬁEn’°'“'> is not a Markov chain, but
a chain of infinite order. Conskquently the X2 goodness of fit test
{(2.4.5), when applied to the table (2.5.18) does not test the goodness

of fit of the chain of infinite order. However, it does test the
particular predictions given by (2.5.18).

The method which has just been presented for estimating the transition
pumbers mij in the noncontingent case may alsc be applied %o the zero-
sum, two-person situation. Here the method has more practical value
because of the difficulty of obtalning expressions for the asymptotic
probabllities of the conditioning states in the two-element model.

Corresponding to the transition matrix (1.4.5) for the one-element
model, the transition maitrix for the two-element model of the zero-sum,
two-person case is as follows, where the state 1j means player A has
i stimuli conditioned to response Al and player B has J stimuli

conditioned to response Bl :




(2.5.1
(2.5 9)22

22
21

20

11
10
02
ol

00

21 20 . 12 11 10 02 o1 00
(1,95 da. | =”@-(l-afl) - ”
9&2/2 (1-2) :Qal/Q e{z-al~a2)/2
Ga,, (1-9) -9(1-32)
9(1-a3)/2 (1-0) 9(a1+a3)/2 - 8(1-a,)/2
| G(2~a3wah)/4 Q(a2+ah)/4 (1-e) @(al+a3)/h _@(2-a1—32)/h
6(1- %)/2 : e(a2+an)/2 - (1-9) @(l-ag)/Q
e(i—a3) (1-6) o2
@(E-aa-ah)/E _ 6my/2 (1-8) Qa3/2
Q(l-a#) Oay, (1-8)

_LE_
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On the basis of this matrix we proceed exactly as for the noncontingént

case. Following (1.4.21)- (1.5.23), we introduce the events X o ¥ o2, W

n AlgnBl,n

Yn - Al,nBE,n
(2.5.20)
Zn = A23n31,n
\ W, = A23nB2,n :

We then need to compute the conditional probabilities P(X 22 22

n+1 ni n+l n) ?

etc., of which there are 4 x 4 x 9 x 9 = 1206 , most of which are zero.

To indicate the method we consider in detail the probabilities for X +1 -

to obtalin an expression for the obseyved transition number nXX in ters

of the wnobserved PRIt Following (2.5.1), we have
5 :
frat g
(2.5.21) Byx = EZ: EE; mij,i*j'P(Xn+1anl Ipe1idn)
1,5=1 1',5%=1 °~
where summation over 1,J,i',j' = 0 is omitted because these values

prohibit an X response by the pair of players. Of the 16 conditional
probabilities occurring in the summation on the right, 4 are zerc because

of zeros in the transition matrix (2.%.19), namely, the transitions

22nlln+1, dln;2n+l’ 12321n+l, and lln22n+l » Moreover, the same argument
which established.(2a5o5) also may be used to show that P( X 12 n+laln)':
P{X S nigz 2n) = P(X 1 nl2l 11n) = P(x X |12n+l n) = O . The
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remaining 8 +transitions all contribute to EXX , and we now proceed to
compute them. The important and imteresting observation is that all 8
conditional probabilities are independent of © . First, it is immediately

clear that
P(Xﬁ+an122n+122n) =1
and

P(Xn +an l_lan _+122n) = 9(:;n 1% Ea;n 1322 ) =

N

Now by .elementary probability theory

P(X

n+lI21n+l)P(2ln+llxngln)P(angln)

P(Elrl—l-ll-gln)

P(Xn+anlzln+laln) =

PO

1
(1-6)° 3
-5

i

i
=+

-where the only computation needing remark is that P(21n+llxﬁgln)’$ 1-8 ,

which may be explained.by:theffollowing tree.
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Note that by virtue of the tree .}?(azml [Xn2:|_n) = a;(1-65) + (1-a)(1-8,) ,

which reduces to 1-@ on the assumphtion that @A -QB . Also for reasons

of symmetry

i
=

P(X X |12
n+

n+i n 12n) -

1

We now consider the sixth term.

P(X

l-lln-:—l)1:)(11n+1I-X'nglm)P(Xn12]'11)
P(11 [,Eiln)

n+l

P(X eln) =

n+anllln+l

l}f 8(i-ay ) %

1
5922, -5))

= %{l—al)/(E-al—ag).,
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The fact that P(11 . [X 21 ) = 6(1-a ) may be seen from the tree just

above and P(11 !21 ) may be read off directly from the transition matrix

n+1,

(2.5.19). .Moreover, in exactly similar fashion it can be shown that

P(Xn+anIllp+l 2 ) - E(a %—aB)

Finally for the last and eighth term we have:

P(x_,, 1 e, [z 1)
P(x X 111 ) = N4l nl bk 11 )
1% n’ .n+1 o P n+1!ll ) I R
_%'°(l—9)?j%
=il
-
T 16 ?

where the tree for P(I1 .. [|X 11 ) is the following:
ntl T n




bl

(The gubscripts A and B have been placed on the ©°'s to indicate which
player is affected on a given branch by nob being reinforced in his responseo)
Combining these eight results we then have for Doy the following linear
‘equation, which is independent of 6 and holds not ornly at asymptote but

for all trials:

(2.5.22) nyy =y op + 5lly o0y ¥ My 1) [y oy * ME-a, -8, ) 21,11

a

1 1
T e, Y i(a v e

| 1
L tag) 12,1l T 18M1,1

By similar methods we obtazin for the other 15 observed transitioﬁs in

X, ¥, Z and W the following linear equations:

(2.5.23) ny, = M0 o1 Y T¥1,01 T Moy 20t (Pma -a,) 21,11

!

a. a.
+ L + L + L
a) tag 12,11 16 11,11 e(al tag 11,10
Ny, = =1 + (l_al) + & + "
x T 22,12 T B2 may) er, 11 12,12 k(e +tag Tiio,11

,(l~al)

1
T e B, T 2(2-a -a,)" 11,01
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(1-a;) . &4 L L
{2-a -8, 21,11 4{&1‘+33§m12311 161,11

a. (l-al)

g + .
2 al+a3 1,10 2{2malm825 11,01

1 (1-a,) L
Byx = Moy 00 Iy 01 Y R 2™

+
-8, =8 21,11

0,21

a,

a8, . .
. 2 s L N o2
' eiagﬁ-ahimll,lz' 16m11§11_ 3 {aE-+ah 0,11

) (1s,) R _
fry T Be1,21 T Meoa e, ) eL,11 T 2720,21 T 20,20

' 8,
1 1 P 1
* ol0,10 F TEM1,11 T (a, + oy, )710,11 * 30,10

N (lmae) . 8, !
"z T W2ea e, ) e1,11 T Ea, vay ) 11,12 T 16711,11

(1—82)

a,
* 3@ 11,01 F I 5 710,11
ENETE TRy S s - Tl

"W = ¥(2-a -ay) 21,11 T 220,10 T 16M1,11 T B{2-a;-a,) 11,01
%o

1
- + Fm +
(&, +a;,)710,11 © ¥"10,10 ¥ 10,00
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(1-33)

a.
- L 3
Oog = Moo ¥ EMp 10 T E(a1+-a3jm12,ll * 2(2-a -2,
S

B VR o L
1611,11 T 2702,12 Z-a -2,) 01,11
a 1=
D, = 3 + { as) e ;
a4 E(al+-a35m12,i1 2(2-a5-5,) 11,21 16%11,11
a (1-a_)
t Sla e 1,10 T E(Ee. e 01,11
173 ? i 3% ?
o = - 3 .1 + In
77 = F2,12 By +ag) 12,11 16711,11 ¢ 202,12
+ = + (l_aS) + &
5%02,01 (2-a -2, ) 01,11 o101
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Next, from the necessary approximate equality bebtween the number of
transitions in and out of any row, we have immediately from the transition

matrix (2.5.19), the following 9 lirear equations:

(2.5.24)

+

Mo o2 T Moy oo = Mop oy T Mop 0

M1,21 T Mr0,010 T Moo 01 T Mor,ee o100 21,10

M™o0,20 © Pe1,20 T Meo,21 T P2o,10

+ = -
Toz,12 T Mi1,12 T M i T e oot Moi11 Mol
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01,11 T Prg,11 T Mo, T Tei,11 T Ma,en F Pa,1e Y Min,10 T Mo

00,10 ¥ ™11,10 T 20,10 T ™0,20 T ™o0,11 T ™Mo,00

Bo1,02 ¥ Mo 02 T Toz,12 T Moz,01

Mo0,01 * Mo2,00 T M1a,01 T Mor,11 T or,0e T Mo1,00

Mo1,00 ¥ ™0,00 T 00,10

Finally, we have 15 linear eguations like (2.5.10) which arise from

linear relationships within a given row and are independent of & .

{2.5.25) 8ylap 1o = (T-8y)myy o)

Bolay o0 = 311,00

8oy 11 7 (Z"al"ae)mzl,ez
Bolng 10 = (L85)mo0 oy

b

(L-aglm, 1y = (8 +eglmy o
(L-aglmy oo = (T-ap)m, o

(2-agmay Jmy gp = (p+ ey tuyy o

(2wa

3-a4)mll;lo (alﬁ-a3)mll’21

(2-ag-ay ) o) = (2-e)-a5)m; )




L-ay = - 3
(3 iy g = By tayim g o

(L-ay dm o0 =
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g, Jm = g m
( 3/ %0z,01 7 #3021

(B-ag-ay Jmy op = gy 49
(2-ag-ay Jmy; o0 = %31 ,11

(Leay Jmos o1 = %800 ,10 -

Tn addition, to these 40 eqﬂaxiomé there are a large'hﬁmber of nonlinear
ones which arise from ratlic compsariscons belbween rows {cfa 2.5.11}. However,
the 40 are adequate to glve a reasonsbly good least sguares fit, and
further consideration is restricted to them. In making the least squares
fit, one varisble is eliminaiedg as in the noncontingsni case, tc guarantee
Ckhat Zm, ., = Zn,, .

| id
Given the estimated mjj ; Wwe may then make a maximum Tikelihood

estimate of © , which surprisingly is éimpler than that; for the non-

contingent case. It is the following:

(2.5.26) EF 0

o
&
o)

where
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T Bop,01 o111 Mo1,02 Y 01,00 T ®o0,10 Y ¥o0,01

N
Given 0 , we test the goodness of f£it of asympbotic transition probabilities
in the two-element model fo the observed .values. The particular transition
IE

denotes the reinforcing event for Player A (in the zero-sum case the

probabilities of interest are P (A

B
® 1,017,041 ) where B

K,nAi‘pnBj‘ﬁL 1
reinforeing event given one player uvniquely determines the reinforcing event
given the other player). .As was already remarked in Chapter 1, in the
zero-gul case the on'e-element models make far too many response predictions
with probability one, ard so-this extension is of particular interest. These
theoretical probabilities are functions of the asymptotic probabilities uij
of the states 1iJ in the Markov chain whose transition matrix is (2n5°19)u
Consequently, we solve (2.5.19) numerically for uij s compute the

theoretical probabilities POD(Aj ) , and proceed

,,n+lBj3n¢lek3nAifﬂnBj‘,ﬂ
to a XE goodness of fit test. The remarks made after (2.5.18) about a
similar test in the noncontingent case also apply here. These theoretical
probabilities may be arranged in a 8 x 4 matrix, but due to the length

of the expressions it is only practical to write the 32 equations

separately.
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1 1 1
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where x = (l-—@)f%@ Ly =8+ %-(l—@) , W = %@ , 7 = %(1-@) and
(2.5.28) P (X)=u, + =(u,+u,)+ iu
os) o2 T 2Vl 12 bl
POQ(Y) = Uy + %(u214_ul0)"+ %ull )
Poo(B) = ug, + %(ule tug )+ ljfull

il
[d

1 1
Poo (W) = ugy + 3wy g+, )+ oy

*32.6. Generalized Conditioning Model. When we consider the goodness

of fit test discussed in $2.4, the mathematical advantages of one-element
-models are partially offset by some of the unrealistic predictions they
generate. An example is the set of four zeroé in the transition matrix
(1.4.5) for the zero-sum two-person game. It is virtually certain that
transitions will be observed for these cellg and this expectation is

supported by data in Chapters 3 and 4, The source of the difficulty is




“B2w
the one mentioned at the end of the preceding section. Namely, in the one-
element model

0.1 P = .
(2 6.1) : (Ai3n+l EignAi,n) L

That is, conditioning to the Ai response cannot change when that response
is reinforced. In the two-person zero-sum situation only one subject of the
pair has his sctual response reinforced; and thus, by virtue of {2.6.1),
both subjects cannot change conditioning states. Consequently, the anti-
diagonal of the transition matrix must be uniformly zero. It has been
remarked that this difficulty may be aveided by assuming a mﬁltimelement
model, but it has also been noted that serious mathematical and statistical
difficulties ensue from this shift.

There is, fortunately a second alternative which we pursue in this
section. The essence of this alternative is to generalize the assumptions
about conditioning embodied in Axiom C2. For simplicity, this mors general

sxiom, designsted C2' , will be stated for only the two regsponse case.

c2'. If a stimulue element is sampled on a trial, and if response

Ai is made and then followed by reinforcement Ej 5 there 1s a probability

cij that the stimulus is conditioned to Al R

In the one-element model the state of conditioning may be ldentified
with the response Lo which the single stimulus is conditicned. Consequently,

for every trial n :
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(2.6.2) o

ij " P(Al,n»i-liEj,nAi,n)

)

lﬁ-cij = P(AE,n+liEj3nAi,n

The © formulation of Axiom C2 may be expressed as the following special

case of C2':

€1 71
c,, = (1-8)
12

{2.6.3)
¢y = €
022 =0 .

Before we examine the formal consequences of this generalized axiom,
it is pertinent to consider what psychological arguments can be propcsed to
support its introduction. In the first place, the experimenter-defined
events Ek are not necessarily events which reinforce the possible
responses for the subject in the manner intended by the experimenter.
The notation introduced in Estes and Subpes [1959a], [1959b] makes this
point explicit. A distinction is drawn between the cbservable experimenter-
defined outcomes Oj and the unobservable subjectivg reinforeing events Ek .
(A similar differentiabion was made earlier by Bush and Mosteller [1955]
 but not amctually much used in their formal developments.) If it be grented
that the detaliled nature of cdnditioning is not yet well understood, then

there are advantages to a model which permits direct estimation of the

coefficients ¢ 5 without the major constraints imposed by (2.6.3). There
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is, for instance, the possib}lity that conditioning of the stimuwlus is
more affected by the occurrence on the preceding trial of the response
or reinforcement which has on the average occurred more often. Imn
succeeding chapters we scrutinize the data for precisely this effect.
The ability of the generalized conditioning model to anslyze such an
effect has the virtue of incorporating into a one-stage Markev chain
what is very possibly an important time-dependent "historical"
vrhenomenon which accumulates over trials.

‘We turn now to formal deve%opment of the generalized conditioning
model. In order to set forth the central ideas withoubt encumbering
details, we hegin, as was done in Chapter 1; with the noncontingent case.
It is to be emphasized that.in the discussion éf this case (and all
others for the generalized conditioning model) we always assume Tor
‘simplicity that each subject has oﬁly one stimulus element zvailable
Ffor sampling.

It is cbvious that the 2 x 2 +transition matrix (1.3.7) for the
noncontingent case may be rewritten in terms of the coefficients cij .
~However, it is more to the point to use the generalized conditioning
axiom to 2nalyze the modifications in (2.6.1)}, that is, the probability
that an A, response will occur on trial n+1 given an El

1

reinforcement and an Al response on trial n . It has already been
remarked that the prediction of this probability does not follow from
the Markov chain which consists of the sequence of response random

variables, and this fact suggests that the reinforcement random variables
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be included in the chain. With this inclusion the states of the chain
are the ofdered pairs AiEj representing pogsible response and
reinforcement combinations on a given trial. For all the one-element
models considered in this boqk, it may be shown (see Estes and Suppes
[1959b]) that the inclusion of the reinforcing events in the states of
the chain does not disturb its Markovian character. A typical tree for

the noncontingent case is the following:

- AlEl
c 'Al
11 31—
' _ AlEﬁ
. i
(2.6.4) | AR,
l '—Cll I AEE]_
A,

A_E

The three other trees are similar in form, together they yield the

following transiticn matrix:




AE AE AE ALE

11 12 271 o2
AE iy cll(l—ﬂ) (lmcll)ﬂ (l—cll)(l—ﬂ)
AlEg P clg(l—ﬁ) (l—clg)ﬁ (lnclg)(l-ﬂ)
(2.6.5)
AE S cEl(l—ﬂ) (l—czl)ﬂ (1 021)‘1 1)
AE, ConT 622(1—3\:) (1-c22)ﬁ (1—0.22)(1-TE)

The rows indicate the responsge and reinforcing event on trial n , and the
columms the response and reinforcing event on trial n+1 .
The maximum likelihood estimates of the coefficients of conditioning

cij assume a particularly simple form, for the partial derivative with

. - o : . \
respect to any cij of the likelihood function L(c:Llj Cips Cpys Cppl s

corresponding to L(8) of (2.2.3), is a fuaction only of Gy - For
example,

(2.6.6) oL _ Mt P P13t P o
9¢); €11 l-¢qy

From the three other equations like (2.6.6) we conclude that the maximum

likelihood estimates of the cij's are as follows:
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>

( e = (n3_1+ nlz)/% nlj'

o)
i

12 = (n21+n22)/§ s
(2.6.7)

)

sy = (n31+ n32)/§ ng,

- )
Spp = (myy +myp)/ ? Byg

where Jj = 1l,...,% . Moreover, an important observation about ﬁhese
estimates is that in tabulating the transition numbers ny j it is actually
unnecessary to record the reinforcing event which is part of the state ]
Thus, it is sufficient tc tabulate the data in & b x o mé,trix which has

the simple theoretical form:

A Ay
ARy 1y 1=Cqp
AlEE c 10 1-c 10
(2.6.8)
AE) Co3 1-c5y
AxE, oo 1-Cop

The maximum likelihood estimates aij are then just the estimated

conditional probabilities P(Al [E j'Ai) which are constant over Lrials.
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Moreover, the tabulations indicated for (2.6.8) are sufficient for

the X2 goodness of fit test, provided we assume that

w(ng+ng,) =0y
(2.6.9)
ﬁ(ni34—ni4} = i3 s
for i = l,...,% . The assumption of these equalities implies that the

maximm likelihood esgtimate of the probability of reinforcement is = .
Obfiously, Tor properly selected reinforcement sequences this assumption
can be violated only by & small experimental error. To clarify this
point concerning the goodness of fit test we need consider oply the
computation for the first two cells of the L x L matrix, i.e., for
the n and n transition numbers. Following (2.4.5), the

11 12

contributicn N of these two cells to the value of X? is:

n Ei% -c ﬁ”2 n Eig -c, . (1-m §
1 nl 11 ) 1 nl 11

(2.6.10) M = - 5
N _ cll(l—ﬁ)

and using (2.6.9), we have:




nl 1 nl
(206011) T] = o o -+ o (l—j‘[)
11 11
B I R T o S T 2
s ﬂ( n c]_l) (l-ﬂ)( n cll)
11 1 1
i [(nll + n12) . o
B 1 nl 11
- 2
“11

which is Just the expression for computing the contribution to a Xe test
of the first cell of (2.6.8). This line of argument directly establishes
that the X° goodness of fit (2.4.5) for the 4 x 4 transition matrix
(2.6.5) may be replaced by a similar test for the 4 x 2 matrix (2.6.8).
However by now the reader may have realized that this particular goodness
of fit test is wvacuous, for the four estimated parameters cij guarantee
that the fit is exact; each row being exactly fitted by one estimated cij .
The upshot of this is that without the imposition of constraints which
specify relations heiween tThe Cij , a test of the goodness of £it of the
generalized corditioning model for the noncontingent case is not provided
by the e test (2.4.5).

This same situation does not obtain in the two-person situations, to

which we now turn. As in the case of Chapter 1 we shall restrict curselves

here to the zero-sum case. In analogy with the transition matrix (2.6.5)
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for the noncontingent case, the chain for the two-perscn situation which
includes the reinforcing events in its states has 16 states. However,
in the zero~sum case this number may be reduced to 8 , for on a given
trial the responses of both subjects and the reinforcing event given one
subject uvniquely determine the reinforcing event given the-other subject;
that is, as remarked earlier, exactly one of the two subjects has his
actual response reinforced. Alsc, tﬁe arguments Just given to justify

a rectangular Y x 2 matrix for the noncontingent case apply here

mutatis mutandis. So Wwe need consider only an 8 x 4 matrix. The tree

for the first row is given below; El designates the reinforcement given

subject A, cij and dij are the conditioning parameters for subjects

A and B , respecitively.
A8y

A%

(2.6.12) A EB

A58,

APy
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The 8 x & matrix has the following form:

A B A B

181 152 0By 2P
AEB L ey ey (3-ap) (leeppld, (Teegp)(1-dyy)
A EBy | epqdyy oy (T-d) 0 (leegy)dyy (Teeg )(3-dy)
AEB, | eppdyy epp(ledyy) (Lmepp)dyy (1-epp)(1-dyy)
AR, | ey eplledy)  (Reepp)dy,  (l-epp)(i-dy,)

(2.6.13)
MEB | opdyy ey (T-dyy) (Teepy)ayy  (Bmepy )(1-4py)
AEBy | oeppdny  opy(1-apn)  (Teegyday,  (Tecpy)(1-45)
AEBy | cpplyy  epplledyy)  (lmeppldy, o (Rmep,){1-dpp)
AEB | oeppdyy  eppll-dgy)  (Tecpplay  (T-cpp)(1-dy)

Let the transition numbers nij be for this .8 x 4 matrix, and let

L(cli,;n,,dge) be the likelihood function corresponding to (2.2.5). Then
(2.6.14) dL M1 T Moty Thyp Mgty Thogt i,
o ° - " Al _‘_
%1y ‘11 1
Similar expressions obtain for the other conditioning parameters. Thus,

we have for the maximum likelihood estimates the following:
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/// g‘ _ nll +-n12 + n21 + n22
11 nl—+ n2

8‘ ] n31 + n32 ny 4 + LT
12 n3 + nu
21 n5-+ ng

n + n +I}.81+Il82

oL _fl T2
22 = no + ng
(2.6.15)
P31 T 33T e T
il n3 + n5
1; B u,, t nl3 e + n?3
12 7 ny + g
,g B By n23 + Doy + n83
el T n, +n
2 8
\ ~ nll_l-b n)_|_3 +n6l+ Il63
d22 = ny, 4 n ?
my * hg
where as before n, = Zn.., .
i 1

Given these eight estimated parameters, the X2 goodness of it test
(2.4.5) applied to the matrix (2.6.13) has 8-3 - 8 = 16 degrees of

freedom and obviously the test for this two-person situation provides =a
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reazl check on the empirical adequacy of the model. In subsequent chapters
we shall compare the it of the model with these eight condificning

parameters to the fit when it is assumed that Cij = dij . Oﬁ this jatter

assumption, the maximum likeiihood estimates of the ci%‘s are, of
31

course, different from those given above; these new estimates are presented

“below:
’8 ) nll+=n124-ngl+-n224-n31%~n33+-n5l-+n53
(/ 11 nl+-n2-%n3-+n5

~ _ n:_Ll + nl3+ n3l +n32 + nlkl + 1'1.42+ n‘?l +n73

12 n1-+n3+ nh+-n7
(2.6.16) < |

s ~ ngl-%n23-+n5l+-n52+-n6l-+n62-+n81=fn83
21 n2+n5+n6+n8

c = .
2

2 7 nh+n6+37+n8
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