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MARKOV LEARNING MODELS FOR MULTIPERSON SITUATIONS, IL

METHODS OF ANALYSISV

by

:!JPatrick Suppes and Richard Co Atkinson

§2 0 L Introduction 0 The aim of this chapter is to present those methods

of data analysis which are specific to the models we consider 0 Althoug.'1

some of these methods are standard, they may not be familiar to all readerso

The emphasis is on maximum likelihood methods or variants thereof, which we

shall term pseudo-maximum likelihood methods.

We first consider, in the next section, maximum likelihood estimates for

the learning parameters in the case of noncontingent reinforcement and. then

for the two-person interaction situation described in §1.40 Necessarily,

as we shall see, the methods described require the assumption of exactly

one element in the stimulus set of each subject.

In the third section, the methods of parameter estimation are extended

to models which assume more than one stimulus element" The methods developed

formally resemble the maximum likelihood methods of the preceding section

but, in fact, do not have the maximum likelihood propertyo In this context

we also consider a method for estimating jointly the number N of stimuli

and the value 9 of the learning parametero

This report assumes familiarity with Technical Report Noo 21, which is

labeled 'Markov Learning Models for Multiperson Situations, 10 The

Theory." The authors are indebted to Mr. J. Merrill Carlsmith who

assisted us in some of the computations reported hereo

On leave of absence from University of California, Los Angeleso
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In the fourth section we consider various x2 tests for testing

hypotheses that the transition probabilities of a nrst order chain are

order Markov chain

constant, that (in case the transition probabilities are constant) they

th
uare specific numbers, and that the process is a

against the alternative i.t is thr but not uth order. In this section

no attempt is made to derive these tests, for which the reader is referred

to the recent statistical literature on Markov chains.

In the fifth section we give some methods of estimation--peculiar to

the models--for making what is "almost" a maximum likelihood estimate of

the learning parameter. These methods are of perhaps more theoretical

than practical issue. They hinge upon first making a least squares

fromestimate of the not directly observed transition numbers mij

state i. to state j in the transition matrix for the multi-element model.

Finally, in the sixth section a generalized conditioning model is

developed in which the single parameter 9 is replaced by several

conditioning parameters. Simple maximum likelihood methods of estimation

for these new parameters are derived.

§2.2. Maximum Likelihood Estimates. When the states of a Markov chain

are observable and the transition probabilities depend on a real parameter,

say 9, then it is often not difficult to obtain the maximum likelihood

estimate 9 of 9 .

Keeping in mind that we are mainly interested in Markov chains which

consist of a sequence of response random variables, let a l ,a2 , ••• ,an



-3-

represent a finite se~uence of values of the response random variables

from trial 1 to n. Let s be the number of subjects. Then the

"-
maximum likelihood estimate of the learning parameter G is the number G

(if it eXists) such that for all G'

(2.2.1)

In the ine~uality (2.2.1), is the probability of

the se~uence of responses a
l
,a2 , ••. ,a

n
for subject u when the learning

A
parameter is G. It is important to understand that the notation

for each u does not imply every subject has the same

se~uence of responses. It would be more explicit, but also more cumbersome

(u) (u) (u) )to write: a
l

,a2 , ••• ,a
n

Use of the product notation in (2.2.1

expresses the assumption that the probabilities of response se~uences of

different subjects are statistically independent.

Consider now for a single subject f(a
l
,a2 , ••• ,an ;G) , where we omit

temporarily the superscript u

property of the process, we have:

By virtue of the fundamental Markov

(2.2.2) f(a la l;G)f(a lla 2;G):::f(a2 !al ;G)f(al ;G)=f(a ,a 1,···,al;G)n n- n- n- n n-

ThUS, summing over trials and subjects, we want to maximize

(2.2.3)
s n
IT IT
u=l m=2
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Let N be the number of states in the process; let Pij(g) be the

probability of going from state i to state j with parameter value g,

let be the observed number of transitions from state i to j ,

aggregated over trials and subjects (thus the nij are tabulated from

experimental data); let Pi (g) be the probability of being in state i

on trial 1; ~~d, finally, let ni be the number of subjects in state i

on trial 1 (Le., here the number of subjects who make response i on

trial 1). Substituting this notation in (2.2.3) we may then replace

(2.2.1) bY':.!

(2.2.4)
N
T(

i,j=l

N
T(

i,j=l

n. no.
p. l (g')P. ~J (g , )

l lJ

,...
That is, to find 9 we want to maximize with respect to 9

To prevent any confusion we may make completely explicit the use of

this notation. Suppose, for instance, there are two subjects with

the following sequences of responses for the first five trials:

12121, 11222 ,where 1 indicates response Al and 2 i.ndicates

response A2 Then clearly nl = 2 , n2 = 0 , because both

subjects made the Al response on the first trial, and, as may

easily be checked, nIl = 1 , n12 = 3 , n2l = 2 and n22 = 2 •

The use of the nij as exponents in (2.2.4) comes from the simple

equation:
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N

7T
i,j=l

but the value of g which maximizes this expression also maximizes the

log of it, and in many cases the latter is easier to work with. Consequently

we shall usually seek to maximize

L(g) '" 2:: [no log P. (g) + 2:: n .. log p .. (g)]
ill j lJ lJ

Ordinarily the function L(g) will have a local maximum, and so we can

find g as an appropriate solution of

(2.2.6)

where pI is the derivative with respect to g of P •

We now apply the general results (2.2.5) and (2.2.6) to the one-element

model for the noncontingent case, discussed in Chapter 1. The transition

matrix (Pij) is given by (1.3.7); moreover, if we begin with trial 1,

Pi(g) is independent of g, and so we obtain from (2.2.6)

and this simplifies to the quadratic equation given in the following theorem.
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Theorem. The maximum likelihooQ estimate of G for the one-element------
mOQel in the noncontingent case is .fO root of the eouation,

Numerical solutions of this e'luation for various experimental data are

presenteQ in subse'luent chapters. From Descartes' l"Ule of signs, it
,

follows that there are no negative roots of (2.2.8), but it is sometImes

true that a root greater than one, which is a maximum, will be fOli.'1.d. The

A

'luestion naturally arises of what interpretation to place on G > 1 .

"-
Clearly such a G cannot be interpreted as a probability, even though the

stochastic character of the matrix (1.3.7) may not itself be disturbed

"'-
by G > 1. It seems to us that the best compromise is probably to think

of such an estimate as approximating a true value of G which, as a

probability, is very close to one. However, it has been our experience

A
that when G > 1 the overall fit of the model is usually rather poor.

We shall return to this point in later chapters.

It is to be noticed that we cannot, in terms of observable 'lu8ntities,

make a similar maximum likelihood estimate of G for the two-element model

of the noncontingent case, whose transition matrix is given by (1.3.17).

The difficulty is that the states of the Markov chain are unobservable,

and. the se'luence of response random variables, which is a se'luence of
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observables, is not a Markov chain, but a chain of infinite order, that

is, the probability of response, on a given trial depends on all preceding

responsesQ

The quadratic equation (20208) suggests that the maximum likelihood

estimate of 9 would be the root of a polynomial of higher degree in the

zero-sum, two-person situation described by matrix (10405)0 (For the present,

we shall assume 9A = 9B in (10405) and thus consider estimation of a single

parametero) Surprisingly enough this 1.s not the caseo In fact, the estimate

has a much simpler formo

Theorem 0 If 0 < a. < 1 , then the maximum likelihood estimate of 9
l ----

case
Proof: As in the noncontingenij', p.(9) 1.s independent of g, and

l

we have from (10405)

dL(9)
=d9

n24(1-a2 )

(1-a
2

)G +

n
3l

(1-a
3

)

(1-a
3

)9

Simplifying, we obtain:

n42(1-a4)

(1-a4)9 +

n12 + n13 + n21+ n24 + n3l + n34 + n42 + n43

9
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We solve this linear equation to obtain the desired resulto

or 1 this estimate is changed in the obvious wayo

If a. is 0
.1

The simultaneous estimate of GA and GB in the zero-sum, two-person

situation is more complicated 0 Specifically

oL(GA,GB) nllal n12 n
21

n22a2
6GB

"" - al ("A-gB J + 1- gA
+ -- + - a2 (gA-GBJ+ 1- gAQ

B
Q
B

n
33

a
3 n~4 n43 n44a4

a
3

(gA-g
BJ+ 1- gA

+ --'"- + - a4 (GA-GBJ + 1 - QA "" 0
Q
B

Q
B

The maximum likelihood estimates of gA and gB are determined by the

simultaneous solution of the above equationso

Maximum likelihood estimates for conditioning parameters in other two

and three-person interaction situations are presented in later chapters 0

32030 Pseudo-M.aximum Likelihood Estimates 0 When more than one stimulus

element is assumed, the problems of estimating the parameter G are

considerably more difficult 0 As has already been remarked in Chapter 1

the states of the Markov chain are the possible states of conditioning of

the stimuli, and these states are unobservable 0 The observable sequence of
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is itself a chain of

infinite ord.er, that is, the probability di.stribution on trial n of A-n

more work.

depends, not just on the response on trial n - 1 , but on t,hat of all

preceding trials. As in the case of the one-element model, (2.2.1) defines

"'-the maxi.mum likelihood esti,mate g, but (2.2.2) no longer holds. The

approach of the pseudo-maximum li,keli,hood method of estimation is dLrectly

to use (2.2.3) as theexpressi.on to maximize even though the resulti.ng

estimate is not the maximum likelihood one. The justification of this

approach is that it represents a crude but computationally practical

approximation of the maximum likelihood estimate. If the transition

numbers n'J'k and the accompanying theoretical expressions f(a la la 0;g)
.... ill m- ID.-c.:.

are used, a still better estimate is obtained at the cost of considerably

Similarly, use of the transition numbers nijkl yield a still

better approximation. Let us call (2.2.3) the first order pseudo~maximum

likelihood estimate g* , and the estimate which uses two preceding trials

the second-order estimate, and so on. It is not difficult to show that

for all the models considered in this book the n-order pseudo-maximum
~

likelihood estimates rapidly converge to the maximum likelihood estimate G

This result follows directly from showing that the chains of infinite order

constituted by the response random variables satisfY the cond.i tions for

convergence given in Lamperti and Suppes [1959].

As a simple example, we compute the (first order) pseudo-maximum

likelihood estimate g* for the two-element noncontingent model

discussed in §1.3. To begin with, we need the probabilities
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lim
n~. ex>

f'or i,j '" 1,2 . To abbreviate notation in derivations we replace the

random variable notation 'A '" i' by the event notation-n+l 'A 'i ,n+l ~

on trial n +1 •ietc., that is, Ai,n+l is the event of response

Similarly, ~,n is the event of' reinforcing event ~ on trial n •

Moreover, f'or purposes of' subsequent generalization and to illus-

trate Some technical simplif'ications which are often useful, we shall

consider the two-element noncontingent model in terms of' a Markov chain

whose states are the number of' stimulus elements conditioned to the Al

response. Thus there will be three states, 0, 1, 2, rather than the

f'our states 0, {sl} , {s2) , {sl,s2) of' the process def'ined by (1.3.17).

From the discussion in 91.3 it should be obvious how to constl"Uct the

trees of the Markov chain in these three states, 1Lnd We simply give here

the transition matrix.

° 1 2

° l-Grr G:n: °
(2.3.2) 1 ~(l-:n:) l..lG 1- 9:n:

2 2

2 ° G(l-:n:) 1-9(1-,,)

We now use (2.3.2) to compute the quantities (2.3.1). Again, for

notational purposes, let C . be the event of'l,n i stimulus elements

conditioned to Ai on trial n We first note that
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2
P(AI U+I1AI n) ~ L ptA C. IA ), , i=O l,n+l l,n+l l,n

because

which is a consequence of' the "independence of' path" axioms, and

Also, f'rom the sampling and response axioms, we have that

and thus (2.3.3) simplif'ies to:

p(AIA ) = lp (C /A) + P(C fA)I n+l I n 2 I n+l I n 2 n+l -1- n, .,. , .., , ... .,

Our problem now is to compute the two quantities on the righ't of' (2.3.5).

We :first observe that
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2
= L p(C ,A, C, )/P(A )

'-0 l,nTI ~,n l,n I,n
l'-

+ P(C jA C .)P(A Ic )p(C )/P(A )
l,n+l l,n 2,n l,n 2,n 2,n l,n'

where again we have eliminated the state Co because

Now

P(AI Ico ). = 0 .,n ,n

P(C I llAl cl ) =,n+ ,n ,n p( C IE A C )P(E ) +l,n+l l,n l,n l,n l,n

p(C IE A C_ )P(E )
1 n+l 2 n 1 n 'n .., n, "J..J L,

= :rr + (1-9)(1-:rr) ,

for in order for A, to occur, the s8Jl1pled element must be conditioned.L,n

Whence if El occurs, regardless of the effectiveness of

conditioning, the new conditioning state is the 88Jl1e. However, if E2

occurs the conditioning stays the S8Jl1e only with probability (1 - 9) .

Now for the second term on the right of (2.3.6), we can pass from C2 n,
to Cl,n+l only if an E2 reinforcement occurs to reduce the number

of stimulus elements conditioned to AI' Thus

(2.3. 8 )

It easily follows from the asymptotic results in §1.3 that
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lim C = (1_11)2
O,n

lim C = 211(1-11)l,n

lim C2 = i
,n

and of course lim P(Ai ) = 11. We thus infer from (2.3.4), (2.3.6) ­,n

(2.3.9) that

(2.3.10) lim P(Cl llA- ),n+ .---l,n

2
= :rr(l-:rr) + (1-9) (l-:rr) + 9 r( (1-1l)

We next compute lim P(C2 l!A ).,n+ -"l,n It is clear that given the Al

response on trial n, the ssmpled stimulus element on trial n must be

conditioned to Al and thus to have event C2 ,n+l it is necessary to

have C
2

•,n That is, given Ai ' conditioning state,n
C2,n.+i only can

be reached from C2 . Thus,n

(2.3.11) lim p( C2 +llAl ) =lim p( C2 +l!Al C2 )P(Al IC2 )p( C" )/P(Al )Jln,n ,n,n,n,n,9n c..,n ,n

= [11+ (1-9)(1-1l)]i/1l

= r(- 9 1l (1-11)

Going back now to (2.3.3) and applying (2.3.4), (2.3.10) and (2.3.11),

we have:
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lim P(A
I

llAl ),n+ ,n

'" 11 +
(I-G) (1-11)

2
,

which is the desired result, From considerations of symmetry, or by direct

computation, it i.s easily established that

I , P(A IA) 1 +(l-G)Jl
lffi 2,n+12,n - - 1t 2 '

and thus also

(2.3.14)
I , P(A IA) '" 1- ~_ (l-G)(l-Jl)

lm 2,n+l l,n " 2

Following then (2.2.7) of the preceding section, the first order pseudo-

maximum likelihood estimate G* is a solution of the equation

(2.3.15)
n

22
J(

- 2 _ (l+G )11 '" 0 ,

which simplifies to the quadratic equation of the following theorem.

Theorem. The first order pseudo-maximum likelihood estimate G* for

the two-element model in the noncontingent case is .':': root of the equation:
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The statistical properties of this method of estimation need investigation,

However, it .can be shown that the method is consistent for all the models

considered in this book,

E~uations (2,3012) and (203013) are special cases for N ~ 2 of more

general results for arbitrary N 0 In order to use pseudo~maximum likelihood

methods to estimate jointly N and 9, it is necessary to derive the

general result,

Theorem 0 For the N-element model (With eguiprobable sampling of

stimulus elements), in the noncontingent~

I ) +
(1-9) (l-m:)

lim P(~,n+l ~,n ~ m: N

and

lim P(A
2

llA
2

) '" 1 -:rr+ (1~9 )m:
. ,n+ .. ,n

Proof: We simply generalize the method of attack used for N ~2 ,

Corresponding to (20303), we have
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=l:l:P(A Ico )p(C o jA. C. ),
.. l,n+l l,n+l l,n+l l,n J,n
l J

P(Al llc. )p(c. )/P(Al )
;n+ J yn J Jln ,n

Analogous to (2.3.4), we know that

(2 ) P(A
l

Ic. ) - .J.
,n J,n - N '

and corresponding to (2.3.7), (2.3.8) and (2.3.11)

o , i > j

p( C. llAl Co) =
l,n+ ,n J;n

rc+ (l-G)(l-rc) ,

G(l-rc) ,

o ,

i " j

i < j - 1

The results in §1.3 for N = 2 easily generalize to show that

(4 )

where (:) = ~i-~"';(~~~:"'i"",,)7~
(3) in (1), we infer:

IN). N .
lint p(c. )" \'. nl(l_rc),-l,

l,n 1.

, the binomial coefficient. Substituting (2) &~d



-17-

(5) P(~,n+llAl,n) ~ P(A~,n) {f:l ~: [>t+(l-G)(l-n)]P(Ci,n)

+ t:= i(~l) G(l->t)P(C. )}
i=l l,n

and thus using (4) as n --> 00

~ >t+ (l-G )(l->t)

1!!i'
"=""" .2LJ.
i

(N). N.
i ,l(l_>t)-J.

Now the first summation is just the second raw moment of the binomial

distribution with parameter >t, and the second summation is the second

raw moment minus the mean Nn, whence

( I ) = H(1-9)(1->t)
lim PAl lAl 2,n+ ,n 1!N

(1-9)(1-n)
=>t+ N '

which establishes (2.3.17), and the argument for (2.3.18) is completely

symmetrical with n and l->t interchanged. Q.E.D.
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It is perfectly straightforward to use (2.3.17) and (2.3.18) to make a

joint pseudo-maximum likelihood estimate of 9 and N , exactly as was done

for 9 with N = 2 • However, the equation which arises from differentiating

L*(9,N) with respect to N is a polynomial of high degree, and it is

desirable to have a simpler approach. Applying the methods just used, we

may establish for the N-element model that

and

(2·3·20)

Let

lim P(Al llEl ),n+ . ,n

lim P(A2 llE2 ),n+ ,IT

9(1-:rr)
= :rc + N

g:rr
:;:;:;1~1(+

N

1-9x = N(2.3.21)

9y = N

Then

N
1

=
(2·3·22) x+ y

9 = -y-
x+ y

We may use (2.3.17) ~nd (2.3.18) to make a pseudo-maximum likelihood estimate

of x, and (2.3.19) and (2.3.20) to estimate y. For x, we have
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A
I,n+l

(l-x) (1-";)

A
2,n

(l-x),,; 1 - ,,;+ x n ,

which is just the transition matrix (1.3.7) for the one-element model with

g replaced by 1 - x ,whence the 'luadratic e'luation (2.2.8) yields the

pSeudo-maximum likelihood estimate of 1 - x , and thus of x. Thi.s is

particularly convenient if, as we have done, maximum likelihood estimates

/'

of g for theone-element model are computed, for g = 1 - x*

For 'y, we have

E
I,n

E
2,n

A
l,n+l

:rr + y(l-";)

(l-y),,;

A
2,n+l

(l-y) (l-n)

l-,,;+y:rr

Because the matrix (2.3.24) is just like (2.3.23) with y replacing x,

the same formal remarks hold. Namely, the 'luadratic e'luation (2.2.8) may

yield the estimate of 1 - Y and thus of y Of course, in this case the

transition numbers

likelihood estimate

are different from those used in making the maximum

g for the one-element modeL In fact, it should be

noticed. that (2.3.24) does not even approximate a chain of infinite order, for

the "transitions" are from. reinforcements to responses. Applications of this

method for jointly estimating g and N are to be found in Chapter l~
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Some Statistical Tests for Markov Chains. The:re are four

standard tests which we shall use in analyzi.ng experimental data for Markov

characteristics. The first tests the hypothesi.s that the Markov process

is stationary, that is, that the transition probabilities are i.nd.ependent

of n, the trial number. The second is concerned with the order of the

Markov chain, for example, first order versus second order. The third test

is one for goo~uess of fit. The fourth test deals with the hypothesis of

whether or not response protocols for different subjects can be viewed as

a collection of samples from the same th
I' order Markov chaIn. The

derIvatIon of these tests and an analysIs of their statistical propertIes

are gIven In Anderson and Goodmarl [1957]; also relevant are Bartlett [1951]

and Hoel [1954]. For our purposes It wIll be suffIcIent to present a brief

descriptIon of the tests.

StationarIty. Let Pij(t) be the probabIlity of transItion from

state I on trial t - 1 to state j on trial t. The null hypothesIs

to be consIdered Is that Pij(t) = Pij , that is, that the transition

'"'probabIlItIes of the Markov process are independent of t • The X"-test

of homogeneIty Is approprIate, and we calculate for each row i of the

transitIon matrIx

(2.4.1) 2
[

no .(t) n .. ]2/(n.. )
X. = Ln. (t-l) lJ _ ~ . lJ

l t,j l ni (t-l) ni ni

where nIj (t) denotes the observed number of cases in state i at t - 1

and state j at t • Further, let
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n. (t-l) ; E: n .. (t)l j lJ

n .. ; ~ n .. (t)
lJ t lJ

n
l
• ; E: n ... lJ

J

If the null hypothesi,s is true, X~ has the usual limiting distribution with

(m-l) (T-l) degrees of freedom, where m is the number of states and T is

the number of trials. In the experiments reported in subsequent chapters

the number of pairs of subjects, or triples of subjects, as the case may be,

Consequently, our proceduretfor individual trialsof

ranges between 20 and 40 , which is not sufficient to yield stable estimates

A ( ) _ n ij (t)
Pij t - n. (t-l)

l

is to sum over blocks of trials, in which case t now represents a particular

block of trials.

Finally, it may be shown that the set of are asymptotically

independent, whence the sum

(2.4.2)

has the usual limiting distribution with m(m-l) (T-l) degrees of freedom.

Order. The Markov character of the sequence' of response random variables,

or of other sequences of random variables, may be tested directly without

recourse to details of stimulus sampling theory. 2Again aX -test of
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homogeneity is appropriate. To begin with, suppose our null hypothesis

is that the outcomes of trials are statistically independent (zero order

process) against the alternative hypothesis that the process is a first

order Markov chain. A test of this hypothesis can be made by computing

the sum

-i)/(:j) ,

where and n.
l

are as defined above, and

n
J
. ~ L n .. ,

i lJ

N =~n ..
. . lJ
l,J

Again, X
2

has the usual limiting distribution with

freedom.

2(m-l) degrees of

A second null hypothesis is that the process is a first order Markov

chain against the hypothesis that it is a second order chain. Rejection of

the null hypothesis in this case would mean that a better prediction of the

response probabilities can be made by observing the two immediately

preceding responses rather than simply the single immediately preceding

response. Results of this test are of particular psychological interest

because there are two main directions one can go in developing models which

are more adequate than the one-element ones. The possj~ility most discussed
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by us is the development. of mult.i-st.imulus-element models which are first

order Markov chains in the unobservable st.ates of conditioning but not in

the sUbject.' s responses. Another possibility is to develop higher ord.er

Markov chains which still have observable states.

The first order vs. second order hypothesis can be tested by

computing the sum

(2.4.4)

x2 has a limiting distribution with

where is defined similarly to nij • If the null hypot.hesis is true,

m(m_l)2 degrees of freedom. It is

straightforward to generalize (2.4.4) to a test of r - 1 order vs. r

order (see Anderson and Goodman [1957]). It may be noted that the various

ratios which occur in these tests are actually the maximum likelihood

estimates of the transition probabilities. Thus Ilij = nij/ni '

])ijk = nijk/nij , and so on. Also, these order tests are predicated on

the assumption of stationarity, although this is not necessary.

Goodness of fit. For all of the Markov chains considered in this book

the transition matrix depends on at least one conditioning parameter.

However, after the parameters have been estimated by the methods discussed

in preceding sections, it. is t.hen possible to make a 2X -test. of the

goodness of fit. of t.he predicted transition mat.rix to the observed transition

matrix. This test would seem to be restricted to one-element models, which
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are the only ones having observable states. However .• in the next sectIon

it is shown that this is not the case, and that the transition nmnbers for

multi-element models may be inferred from observed data even though they

are not directly observable.

/'-.

For simplicity of exposition, let 9 be the estimated parameter,

/'- "let Pij(9) be the theoretical transition probabilities based on 9

represent the observed transition probabilities asAs before, let '"Pij

estimated from the transition numbers

~ ('"L:- n. P ..
. . 1 IJ
1,J

Then under the null hypothesis

has the usual limiting distribution with m(m-l) - 1 degrees of freedom.

(If q parameters are estimated, then there are m(m-l) - q degrees of

freedom.) When it is convenient, Pij(g) in the denominator may be

"-replaced by P.. without seriously affecting the test. For example, if
IJ

j?. f 0 and p .. (8) ~ 0 , such a substitution is convenient. This
IJ 1.J

situation occurs in the transition matri.x (1.4.5) for zero-sum two-person

games.

Although this goodness of fit test has the virtue of provid.ing an

overall measure of the adequacy of a particular Markov chain with respect

to a given experiment, it would be a mistake to construe it as providing

a test of the goodness of fit of stimulus sampling theory to the data of

the experiment. Consider, for example, the sequence of response random

variables in the one-element model with noncontingent reinforcement 0 As
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we shall see in ChapterJD, the fit of this Markov chain to data may be

exceptionally good, and yet the additional prediction from the theory that

P(Al llEl Al ) = 1 will be clearly contradicted. The implication of
,n+ .,n .lin

this last pred.iction is that if we take the Markov chai.n whose states are

the possible pairs of responses and reinforcements, the fit to data will

not be as good as that of the Markov chain consisting only of the se~uence

of response random variables. On the other hand, poor fit of the se~uence

of response random variables in the one-element model does not entail

rejection of the theory, for a multi-element model may fit considerably

better. The point of these remarks is to caution against making too simple

an interpretation of the relation between the x2 goodness of fit test and

the fundamental theory of stimulus sampling.

Identical Processes. Often, a ~uestion of major interest in analyzing

learning studies is whether or not the subjects in a particular experimental

group can be considered e~uivalent. More specifically, whether the response

protocols for different subjects can be viewed simply as a .collection of

samples from the same r th order Markov chain. We will consider the test

only for first order Markov chains but the generalization to thr order

chains is obvious.

Let 'i?~~) = n~~)/n~h) denote the maximum likelihood estimate of the
lJ lJ l

first order transition probability

hypothesis that

sample h (h =

for the process from which

sfor h = 1,2)... ,s ; that is, that the

(h)
Pij

was obtained. We wish to test the null1,2, ... ,s)

(h)
Pij = Pij

processes are identical.
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Again, the X
2

test of homogeneity is appropriate; that is, to test

thIs hypothesis, we calculate

(2,4.6)

where n~:) ~ ~ n(~) and
lJ h lJ

lImiting distribution with

p~ :) '" n ~ : ) / ~ n ~ :) , i has the usual
lJ J.J j lJ 1

(s ~l)(m -1) degrees of freedom. Finally,

has a limiting
9
X~-distribution with m(m-l)(s -1) degrees of freedom.

*§2,5, Estimation of Transition Numbers in Multi-Element Models, It

has already been remarked several times that the states of conditioning of

stimuli are not observable when more than one stimulus is available for

sampling, The literature of stimulus sampling theory "ould incline one to

think that the transition numbers associated with these unobservable states

of conditioning also are not identifiable, That is, that they are not

uniquely deternLined by· the observed response data. Fortunately this is

not so for the models we consider in this book, and in fact the tra.'1sition

numbers for the conditioning states can be estimated independent of Q.

Starred sections may be omitted without loss of continuity by readers

interested only in the main lines of development,
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This is a particularly desirable state of affairs, for the estimated

numbers may then themselves be used to estimate G by the maximum

likelihood methods of 52.2. (It is not difficult to show (see Anderson

and Goodman [1957]) that these transition numbers form a set of

sufficient statistics.)

We now carry through this anaylsis in detail for the tWD-element

mDdels in the noncontingent situation and also in the zero-sum, two-person

situation. Naturally, the simpler of the two will be considered first,

that is, the noncontingent case. We shall continually refer to the

transition matrix (2.3.2) for the two-element model. For uniformJ.ty of

notation, let nij be the transition numbers for the observed responses

A
l and A

2
, and let m.. be the transition numbers for the unobserved

lJ

states 0, 1 and 2 of the Markov chain. Our first problem is to write

an equation for each n ..
lJ

in terms of the In order to do this it

is necessary to compute the conditional probabilities P(A. A. Ie e )l,n+l J,n k,n+l £,n '

where i,j ; 1,2 and k,£; 0,1,2 • For simplicity, we replace C by
l,n

ln ' to designate the state with exactly one element conditioned to Al ,

and similarly, for CO,n
and C

2,n
Beginning with the transition

number for A A , we note that the state of conditioning on
l,n+l l,n

neither trial can be 0, whence
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Clearly

and by elementary probability theory

P(A A 11 2) =1 n+l 1 nn+l n, ,

Now P(l 112) is given by the matrix (2.3.2), and by (2.3.8),n+ . n

P(l +1 IA- .2 ) = g(l-rt) } whencen --L~n n

F(Al lAl 11 12) = -2
1

. g(l-rt) . l/g(l-rt) = !2,n+ ,n n+ n

On the other hand,

(2.5.5)

for in order to make an A
l

response on trial n the one element

conditioned to this response must be sampled and thus the other element

(which is not sampled and not conditioned to A
l

) cannot change its

conditioning. Therefore, P(2 llAl 1) = 0 , and (2.5.5) follows atn+ - - ,n n

once from this.

For the fourth term, we have

P(A A 11 1) = P(A 11 )P(l IA 1 )P(A 11 )/P(l 11)1 n+l 1 n n+l n 1 n+l . n+l n+l 1 n n 1 n n n+l·· n" , - -, ,
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Now by virtue of (2.3.7)

and we conclude:

Combining (2.5.1) - (2.5.6), we obtain the equation for nll and by similar

argument,s the equations for n12 ,n21 and n
22

. They are as follows:

1 1 [ 1t+ (1-9) (l-n) ]
n12 = 2"'21 + mlO + 4" 1 ~l

1 - -9
2

1 1 [ 1-9:rr ]n21 = ~2 + 2"'01 + 4" -1- mll1-29

It is necessary to combine the four equations of (2.5.7) in order to

eliminate 9 • We obtain the four equations :
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1 1 1
;;; m22 + ZU"21 + m12 + ZUOI + ZUll

Secondly, note that for a large number of observations the number of

transitions into a given row of (2.3.2) must approximate very closely

the number of transitions out of the row, independent of the value of 9 .

Whence we have the two equations:

(2.5·9)

~2 = ~l

Thirdly, and stand in a ratio which is independent of

(l-rr)
= rr ~2

9 . Thus

Finally, two additional linear relations can be obtained by comparing

transition numbers of different rows. From (2.3.2) we see that
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whence

and

whence

From (l), (2), (2.5.9) and (2.5.l0), we infer:

which pair of equations is equivalent to:

(2.5.•ll)

The nine equations (2.5.8), (2.5.9), (2.5.l0) and (2.5.ll) in seven

unknowns may be expressed by the matrix equation
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(2.5.12)

1 1 1 1 l'2 2 2 ! mOO'

I
nn + n21

1 1 1 "1
;

2 2 2 1 mOl

\
nll+ n22

1
1 1 1 1 I

2 2 2 mlO I n12 + n21
I I

1 1
1 1 1 I

I
2 2 2 mll I

n12 +n22

I1 -1 m12 =\ 0I ,
!

\
, ,

1 -1 m21 I 0

Irr-l m22 0

1 1 -1 -1 0

2rr 2rr rr-l rr-l rr-l 0

We want to use the method of least squares to solve this system of equations

for the overdetermined variables However, the total number

N = Z n .. = Z m.. of transitions is not a number which is to be estimated
lJ lJ

in the least squares procedure for this number is known with probability

one. In order to avoid having Z mij f N , we replace the equation

by

N = ~ m.. ,
. . lJ
l,J
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either of which is a consequence of the other together with the remaining

three equations of (2.5.8). We then use (2.5.13) to eliminate one of the

,seven variables, say mOO ' and thereby guarantee exact satisfaction of

(2.5.13) by the least squares estimate of the mij

following matriX equation

The result is the

(2.5.14)

1 1 1 1 1 nn+ n212 2 2 mOl \
1 1 1 1 1 N-nn -n222 2 2 ~O

\1 1 1 1 1
2 2 2 ~l

n12 + n21

1 -1 I
~ 0m12

1 -1 m21 0

:n: :n:-l m22 0

1 1 1 2 2 N

l+:n: l+:n: l+:n: 1 1 N2:n: 2:n: 2:n:

which can be written as

(2.5.15) QM ~ K ,

where Q. is the 8 x 6 matrix, M the column vector of mij and K

the column vector on the right of the equality sign of (2.5.14). For the

asmoment it will be convenient to renumber the variables mij

Applying now the method of lea,st squares, we seek to minimize



Now for j = 1, •.• ,6

8
=:2:::

i=l

6
L
j'=l

2
q .. ,m.,]
lJ J

dS
dIn. :;::

J
- 2 I:(k. - I: qiJ· ,m

J
. ,)qiJ·

i l j I

Settling these partial derivatives equal to zero, in order to minimize

S(ml , ... ,m6) we solve the system of six equations which may be written

(2.5.16) BM = A

where B = Q'Q , A = Q'K , and Q' is the transpose of the matrix Q

Given these estimated transition numbers m.. we may now make a
lJ

maximum likelihood estimate of 9 . From the transition matrix (2.3.2),

we see at once that

dL( 9) mOO 11
-------+

d9 - 1-9"

(mOl + mlO +m12 + ~l)
9

mn m22 (1-11)

2-9 - 1-9(1-11)

"'-Setting this derivative equal to zero, we obtain Q as a root of the

following cubic equation:
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"-
This estimate 9 may be compared with the f.irst order pseudo-maximum

likelihood estimate 9* of 92,3, Moreover, the X
2

goodness of fit test

(2,4,5) may be applied to the 2x 2 table of transition probabHIt.ies

More interesting still is the applica-

P(A. l.lA. ) for i,j = 1,2 at asymptote.
l,n+J ,n

are g.iven by (2.3.12) and (2.3.13).

A

The theoret.ical values p .. (9)
lJ

tion of the X
2

test to the fit at asymptote of the theoret.ical

probabilities P(A. llE
k

A. ) for which the one-element model is
l,n+ .. ,n J.9n

particularlybad.because the re-occurrence of a reinforced response is

predicted with probabHity one 0 Given g, we may apply the x?- test to

the following 4 x 2 table, whose entr.ies are computed at asymptote by the

methoq.s of § 2 .3 :

Al
A

2

A1El
1 :J( 1 :n:-+- 2-22 2

A
1

E
2

E+ 1-9 1 9 :n:-+-- -
2 2 222

(2.5.18)

A
2

E
l

1 9 1 9
~+2 l--rr--

2 2

~E2
:J(

1
:n:

2 - 2
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The test is stringent, for neither the first nor fourth row have any

probabilities which depend on 9 The results of this test are compared

in Chapter 10 with a similar test for the generalized conditioning model

discussed in the next section. In the two-element model the se~uence of

random variables <:!!:l~l ':!!:2~2' ... ':!!:n~n' •.. >

a chain of infinite order. Conse~uently the

is not a Markov chain, but

goodness of fit test

(2.4.5), when applied to the table (2.5.18) does not test the goodness

of fit of the chain of infinite order. However, it does test the

particular predictions given by (2.5.18).

The method which has just been presented for estimating the transition

numbers mij in the noncontingent case may also be applied to the zero­

sum, two-person situation. Here the method has more practical value

because of the difficulty of obtaining expressions for the asymptotic

probabilities of the conditioning states in the two-element model.

Corresponding to the transition matrix (1.4.5) for the one-element

model, the transition matrix for the two-element model of the zero-sum,

two-person case is as follows, where the state ij means player A has

i stimuli conditioned to response Al and player B has j stimuli

conditioned to response Bl :



(2 .• 5.19)
22 21 20 12 11 10 02 01 00

22 I (1-9) gal 9(1-a
l

)

21 19a/2 (1-9) 9a/2 9(2-a
1

-a2 )/2

20 I 9a
2

(1-9) 9(1-a2 )

12 ~(1-a3)/2 (1-9) 9(a1+a
3

)/2 9(1-a1 )/2

11 I 9(2-a
3

-a4)/4 9(a2+a4)/4 (1-9 ) 9(a1+a
3

)/4 9 (2-a
1

-a2 )/4

10 I 9(1-alj.)/2 e(a~+alj.)/2 (1-9) 9(1-a2 )/2

02 I 9(1-a
3

) (1-9) 9a
3

Iw

01 I 9(2-a
3

- a4)/2 9a4/2 (1-9) 9a/2
-J

I

00 I e(1-a4 ) 9a4 (1-9)
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On, the basis of this matrix we proceed exactly as for the noncontingent

case ~ Following (1.4.21) - (1.4.23), we introduce the events X,Y,Z,W:
n n n n

x ~ A B
n l,n l,n

z ~ A B
n 2,n l,n

W =A
2

B
2n ,!In,9n

We then need to compute the conditional probabiUties p(X IX 122 122 ) ,n+n n+ n

etc., of which there are 4 x 4 x 9 x 9 ~ 1296 , most of which are zero.

To indicate the method we consider in detail the probabilities for X lXn+ n

to obtain an expression for the observed transition number ~ in terms

of the unobserved mij,i'j' Followi,ng (2.5.1), we have

2
~~

i,j=l
p(X X 1-'" ..)

mij,i'j' n+l n l In+llJn '

where summation over i,j,i',j' = 0 is omitted because these values

prohibit an X response by the pair of players. Of the 16 conditional

probabilities occurring in the summation on the right, 4 are zero because

of zeros in the transition matrix (2.5.19), namely, the transitions

p(X lX 122 121) ~n+ n .n+ n

p(X +lX 122 112 ) = p(X IX 121 111) = p(X lX 112 ,'111 ) = O. Then n n+ n n+ nn+ n ,n+ n n+ n

22 11 21 12 12 21 and 11 22 Moreover" the same argumentn n+l' n n+l' n n+l' n' n+l •

which established (2.5.5) also may be used to show that
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remaining 8 transitions all contribute to ~,and we now proceed to

compute themo The important and interesting observatIon is that all 8

conditional probabilities are independent of Q. First, it is immediately

clear that

and

Now by elementary probability theory

p(x 1121 1)P(21 llx 21 )p(X 121 )n+ n+· ·n+ TIn n·· ·n
P(21

nH
I21

n
)

!·(l-Q)·!
2 2= (l-Q )

where the only computation needing remark is that P(21n+llxn21n ) = 1 - g ,

which may be explained by the following tree.
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20

a1,E 1-idB 21

21-X

gA n
1-a

1
,E

2

l-gA 21

which reduces to 1- g on the assumption that gA =gB . Also for· reasons

of symmetry

p(x lX 112 112) = ~n+n n+n Lf.

We now consider the sixth term.

P(X llll l)P(ll 1lx 21 )p(X 121 )
:p(X X In 21) = n+ n+ n+ n n 11 n

n+ln n+l n p(n 121)
n+1 n

1
= c(l-a )/(2-a -a )

'+ 1 1 2



The fact that P(ll llx 21 ) = G(l-a
l

) may be seen from t11.e tree just
n+ n n

above and P(11n+l!21n ) may be read off d.irectly from the transition matrix

(2.5.19). Moreover, in exactly similar fashion it can be s11.own~that

p(x +lX lu +112 )n n· n n

Finally for t11.e last and eighth term we have:

p(X 1111 l)P(ll +l.lx 11 )
P(X lX III 111 ) = n+ n+ n n n p(X III )

n+ n n+ n P(lln+l!lln) n .n

1
= 16 '

where the tree forP(lln+l!Xnlln ) is t11.e following:

GB
10

a
l 1-

B 11

ll~X

l ..a
G
A 01

1

1-9
A 11
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(The subscripts A and B have been placed on the 9's to indicate which

.player is affected on a given branch by not being reinforced in his response.)

Combining these eight results we then have for n
XX

the follmdng linear

equation, which is independent of 9 and holds not only at asymptote but

for all trials:

1
+ If'll12,12 +

1
i6m

11,11

(l-a)

By similar methods we obtain for the other 15 observed transitions in

x, Y, Z and W the following linear equations:

1
+ i6"'11,11 +

1
= ~2212 +,

1
If'll12,12 +



(l-a
l

)

2(2-al -a
2

)llL.Ll,Ol

(1-a
2

) a
2

+ 2(2-a
l

-a2 )illll ,Ol + 4(a2+a4)~O,ll
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1 1
+ ~11,11 + zm02,12

(1-a
3

) 1

2(2-a
3

-a;)lI1n ,21 + ~n,n

1
nZZ = lj:'ll12 12 +,

a4 (1-a4)
+ 4(a2 + a4)~o,n + 4(2-a

3
-a))1I10l ,n



1
+ ~ll,ll + m10 ,20 +

1
+ J+"'10, 10 +

1
+ roo 10,

a"- 1 a4
'\rZ = 2(a

2
+'a4)illll ,12 + J:D'Ull,II + 4(a2 + a4)ill10 ,1l

(1-a4 ) 1 1
+ 4(2-a

3
- a4)illol ,11 + mOl 02 + J+"'01,01 + roo,01,

1 a4 1 (1-a4)

'\rw = J:D'Ull, II + 4(a2 + a4)ill10 ,ll + Till + 4(2-a
3

-a4)il101 ,114 10,10

111
+ J+"'01,01 + ZUOO ,10 + roo,ol + mOO,OO

Next, from the necessary approximate equality between the number of

transitions in and out of any row, we have immediately from the transition

matrix (2.5.19), the following 9 linear equations:

m r+!lL +m02,lc ll,12 22,12 = m12 ,22 + m12 ,1l + ~2,02
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Finally, we have 15 linear equations like (2.5.10) which arise froill

linear relationships within a given row and are independent of G .

(2.5.25) al~2,12
; (1-al )ill22 ,21

a2ill21 ,20 ;

al~1,22

a2ill21 n = {2-al-a2)ill2122, ,

a2ill20 10 ; (1-a2)~O,21,

(1-a3)~2,n = (al + a3)~2,22

(1-a3)~2,02 .- (1-al )m12 ,22

(2-a3- a4)illn ,12 ; (a2 + a4)~1,21

(2-a3- a4)mll ,lO ; (al + a3)~1,21

(2-a3-a4)~1,0l
; (2-al -a2 )illn 21,
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(1-ah,)W10 r ~ (a2 + a!+)~O ,20, ~ J.

(l-a4)wIO ,00
( . '

1#.: \l-a,,)~O 0'0
c. :J'~

(1-a3 )w02 .,01 2": a3m02 ,l2

(2 ~a3 -a4 )mOl .
o
02 i3

altmOl,ll

(2-a3 - a4)mOl ,00 :g
a3mOl ,9l1

(1-a4)mOO ,01 ~

a4mOO,10

In addition, to these 4o equations there are a large number of nonlinear

ones which arise from ratio comparisons between rows (cf. 205.11). However,

the 40 are adequate to give a reasonably good least squares fit, and

further consideration is restricted to thew. J.n making the least squares

fit, one variable is eli.minated, as in the noncontingent case, t,o guarantee

that Lmij ~,Lnij

Given the estimated m, 0 , we may then make a maximum likeLIhood
J,J

estimate of G, which surprisingly is simpler than that for the non-

contingentcasec

where

Iti8 the following:
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5' =

5

A
Given g, we test the goodness of fit of asymptotic tra:Clsition probabilities

in the two-element model to the observed values. The particular transition

probabilities of interest are

denotes the reinforcing event

P (A. B. IEk A., B., ) where
CD l,n+l J ,n+l ,n J.. $In J ,n

for Player A (in the zero-sum case the

E
k,n

reinforcing event given one player uniquely determines the reinforcing event

given the other player). As was already remarked in Chapter 1, in the

zero-sum case the one-element models make far too many response predictions

with probability one, and so this extension is of particular interest.

theoretical probabilities are functions of the asymptotic probabilities

These

'IJ. O •

lJ

of the states ij in the Markov chain whose transition matrix is (2.5.19).

theoretical probabilities

Consequently, we solve (2.5.19) numerically for

to a

u .. , compute the
lJ

P (A. lB. llEk A., B., ), and proceed
co ~',9n+ JJn+ _,n l .ilu J In

goodness of fit test. The remarks made after (2.5.18) about a

similar test in the noncontingent case also apply here. These theoretical

probabilities may be arranged in a 8 x 4 matrix, but due to the length

of the expressions it is only practical to write the 32 equations

separately.
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Pm (XIE1W)
1 1

= [SUllY + J+U01W]! Pm (W)

Pm (y IE1W)
111

UOOW] ! PCD (W)= [SUllY + 2"ulOY + J+uOlw +

P (Z /E1W)
1

+ tUOlx]! PCD (W)= [SUllz00

PCD(W!E1W)
1 1 1

+ UOOX]! Pm (W)= [SUllz + 2"uloz + J+uOlx

where x = (l-G) + ~ ' y = G + ~(l-G) , W = ~G , z = ~(l-G) and

(2.5,28) P (X) 1 1
= u22 + 2"(u21 + u12 ) + Ifullm

P (y) 1 1
= u20 + 2"(u21 + U1O) + "4ullCD

P (z) 1 1
= u02 + 2"(U12 +UOl ) + Ifull00

P (w) 1 1
= uoo + 2"( ulO + uOl )+ "4ull

00

*g2.6. Generalized Conditioning Model. When we consider the goodness

of fit test discussed in§2.4, the mathematical advantages of one-element

models are partially offset by some of the unrealistic predictions they

generate. An example is the set of four zeros in the transition matrix

(1.4.5) for the zero-sum two-person game. It is virtually certain that

transitions will be observed for these cells and this expectation is

supported by data in Chapters 3 and 4. The source of the difficulty is
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the one mentioned at the end of the preceding section. Namely, in the one-

element model

(2.6.1)

That is, conditioning to the A.
l

response cannot change when that response

is reinforced. In the two-person zero-sum situation only one subject of the

pair has his actual response reinforced, and thus, by virtue of (2.6.1),

both subjects cannot change conditioning states. Consequently, the anti-

diagonal of the transition matrix must be uniformly zero. It has been

remarked that this difficulty may be avoided by assuming a multi-element

model, but it has also been noted that serious mathematical and statistical

difficulties ensue from this shift.

There is, fortunately a second alternative which we pursue in this

section. The essence of this alternati.ve i.s to generali.ze the assumptions

about condi.tioning embodi.ed in Axiom C2. For simplici.ty, thi.s more general

axiom, designated C2' , will be stated for only the two response case.

C2'. If ~ stimulus element is sampled on ~ trial, and if response

Ai is made and then followed by reinforcement Ej , there i.s ~ probabi.Uty

cij that the sti.mulus is conditioned to Al •

In the one-element model the state of conditioning may be identi.fi.ed

with the response to which the single stimulus is conditioned. Consequently,

for every trial n :



1
Cij ~

1 - c .. ~
lJ
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P(AI liE, A, ),n+ Jjn J.,n

P(A2 liE. A. ),n+ J,n l,n

The g formulation of Axiom C2 may be expressed as the following special

case of C2':

cII .- 1

cl2 -- (I-g)
(2.6.3)

c21
~ g

c22
~ 0

Before we examine the formal conse~uences of this generalized axiom,

it is pertinent to consider what psychological arguments ca.n be proposed to

support its introduction. In the first place, the experimenter~defined

events Ek are not necessarily events which reinforce the possible

responses for the subject in the maD-ner intended by the experimenter.

The notation introduced in Estes and Suppes [1959a], [1959b] makes this

point explicit. A distinction is drawn between the observable experimenter-

defined outcomes and the unobservable subjective reinforcing events Ek

(A similar differentiation was made earlier by Bush and Mosteller [1955]

but not actually much used in their formal developments.) If it be granted

that the detailed nature of cond.itioning is not yet well understood, then

there are advantages to a model which permits direct estimation of the

coefficients without the major constraints imposed by (2.6.3). There



noncontingent case may be rewritten in terms of the coefficients

is, for instance, the possibility that conditioning of the stimulus is
/

more affected by the occurrence on the preceding trial of the responsy

or reinforcement which has on the average occurred more often. In

succeeding chapters we scrutinize the data for precisely this effect.

The ability of the generalized conditioning model to analyze such an

effect has the virtue of incorporating into a one-stage Markov chain

what is very possibly an important time-dependent "historical"

phenomenon which accumulates over trials.

We turn now to formal development of the generalized conditioning

model. In order to set forth. the central ideas without encumbering

details, we begin, as was done in Chapter 1, with the noncontingent case.

It is to be emphasized that in the discussion of this case (&~d all

others for the generalized conditioning model) we always assume for

simplicity that each subject has only one stimulus element available

for sampling.

It is obvious that the 2 x 2 transition matrix (1.3.7) for the

c ..
lJ

However, it is more to the point to use the generalized conditioning

axiom to analyze the modifications in (2.6.1), that is, the probability

that an Al response will occur on trial n + 1 given an El

reinforcement and an Al response on trial n. It has already been

remarked that the prediction of this probability does not follow from

the Markov chain which consists of the sequence of response random

variables, and this fact suggests that the reinforcement random variables
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be included in the chain. With this inclusion the states of the chain

are the ordered pairs AiE
j

representing possible response and

reinforcement combinations on a given trial. For all the one-element

models considered in this book, it may be shown (see Estes and Suppes

L1959b]) that the inclusion of the reinforcing events in the states of

the chain does not disturb its Markovian character. A typical tree for

the noncontingent case is the following:

A1El

cll
' Al

1-

(2.6.4) A1El

A
1

E
2

l-cll rc
A

2
E

l

A2

1-
A2E2

The three other trees are similar in form, together they yield the

following transition matrix:
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A1El
A

1
E

2
A

2
E

l

A1El cllrc cn (l-n) (l-Cn)rc

A1E2 c12rc C12 (1->f) (1-c
12

),-,:

(2.6.5)

A
2

E
l c21rc c21 (1-rc) (l-c21 )"

A2E2 c22 rc c22 (1-rc) (1-c22 ) "

The rows indicate the response and reinforcing event on trial n, and the

columns the response and reinforcing event on trial n + 1

The maximum likelihood estimates of the coefficients of conditioning

cij assume a particularly simple form, for the partial derivative with

respect to any c ..
J.J

of the likelihood function

corresponding to L(G) of (2.2.3), is a function only of cij For

example,

(2.6.6)

From the three other equations like (2.6.6) we conclude that the maximum

likelihood estimates of the c .. 's are as follows:
J.J
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where j = 1, ... ,4. Moreover, an important observation about these

estimates is that in tabulating the transition numbers n
ij

, it is actually

unnecessary to record the reinf"orcing event which is part of the state j

Thus, it is sufficient to tabulate the data in a 4 x 2 matrix which has

the simple theoretical form:

Al

AIEl cn

A
l

E
2

c
12

(2.6.8)

A
2

E
1

c
2l

A
2

E
2

c
22

'"The maximum likelihood estimates c
ij

are then just the estimated

conditional probabiUties p(A1IE ;A.) which are constant wer tr.ials.
J :J.
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Moreover, the tabulations indicated for (2.6.8) are sufficient for

X2

ll(nol + n.,.,) = nnl lL

(2.6·9)

1l(ni3 + ni 4) = n
i3

,

for i = 1, .•• ,4. The assumption of these equalities implies that the

maximum likelihood estimate of the probability of reinforcement is 11.

Obviously, for properly selected reinforcement sequences this assumption

can be violated only by a small experimental error. To clarify this

point concerning the goodness of fit test we need consider only the

computation for the first two cells of the 4 x 4 matrix, i.e., for

contribution

the and n12 transition numbers. Following (2.4.5), the

of these two cells to the value of X
2

is:

(2.6.10) 11 =

[
n12 ] 2n --- - c (1-11)

1 n
l

11
,

and using (2.6.9), we have:
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(2,6.11)

nl [ nll + n12 2 nll + n '"
- cll )2J~ - n( - c

ll
) + (l-n)( . le.

cll nl ill

n Cnll + n12 )
- cllr1 n

l
~ ,c

ll

which is just the expression for computing the contribution to a test

of the first cell of (2.6.8), This line of argument directly establishes

that the x2 goodness of fit (2.4.5) for the 4 x 4 transition matrix

(2.6.5) may be replaced by a similar test for the 4 x 2 matrix (2.6,8).

However by now the reader may have realized that this particular goodness

of fit test is vacuous, for the four estimated parameters cij guarantee

that the fit is exact, each row being exactly fitted by one estimated cij

The upshot of this is that without the imposition of constraints which

specify relations between the c
ij

, a test of the goodness of fit of the

generalized conditioning model for the noncontingent case is not provided

by the y2 test (2.4.5).

This same situation does not obtain in the two-person situations, to

which we now turn. As in the case of Chapter 1 we shall restrict ourselves

here to the zero-sum case. In analogy with the transition matrix (2.6.5)
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for the noncontingent case, the chain for the two-person situation which

includes the reinforcing events in its states has 16 states. However,

in the zero-sum case this number may be reduced to 8, for on a given

trial the responses of both subjects and the reinforcing event given one

subject uniquely determine the rein£orcing event given the other subject;

that is, as remarked earlier, exactly one of the two subjects has his

actual response reinforced. Also, the arguments just given to justify

a rectangular 4 x 2 matrix for the noncontingent case apply here

mutatis mutandis. So we need consider only an 8 x 4 matrix. The tree

for the first rOW is given below; El designates the rein£orcement given

subject A , c ..
lJ

and are the conditioning parameters for subjects

A and B, respectively.

(2.6.12)
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The 8 x 4 matrix has the following form:

AIBI AI B2 A2Bl
A2B2

AIEIBI "nd12 "n(l-d12 ) (1-"n)d12 (l-"n) (1-d12 )

AI EIB2 "nd21 "n(1-d21 ) (1-"n)d21 (l-"n)(l-d2l )

A
I

E2B
1 "12dn "12(l-dn ) (1-"12 )dn (1-"12)(1-dn )

AI E2B
2 "12d22 "12 (1-d22 ) (1-"12 )d22 (1-"12)(1-d22 )

(2.6.13)

~~Bl "21dn "2l (l-dn ) (l-"2l)dn (1-"21)(1-dn )

A2EI B
2 "2ld22 "2l(1-d22 ) (1-"21)d22 (1-"21) (1-d22 )

A2E2B
l "22d12 "22 (1-d12 ) (1-"22)d12 (1-"22) (1-d12 )

A
2

E
2
B

2 "22d21 "22 (l-d2l ) (1-"22)d21 (1-"22)(1-d2l )

Let the transition numbers n.. be for this 8 x 4 matrix, and let
lJ

L("11""'~2) be the likelihood fun"tion "orresponding to (2.2.5). Then

n13 + n14 + n23 + n24

l-"n

Similar expressions obtain for the other "onditioning parameters. Thus,

we have for the maximum likelihood estimates the following:
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A llll + ll12 + ll21 + n22
Cll ~

III + ll2

"'- ll31 + ll32 + ll41 + n42
c12 =

ll3 + n4

ll51 + ll52 + ll61 + n62/'-

c21 =
n5 + ll6

/" ll71 + ll72 + ll81 + n82c22 =
ll7 + ll8

(206015)

/" = n31 + ll33 + n
51

+ n
53dll n

3
+ ll5

/'- nll + ll13 + ll71 + n'73
d12 =

III + ll7

A n21 + ll23 + ll81 + n
83d21 =

ll2 + ll8

"- ll41 + n43 + ll61 + ll63
d22 '" ,

n4 -+ n6

n =.Eni .
i j J

Given these eight estimated parameters, the x2 goodness of fit test

(2.405) applied to the matrix (2.6.13) has 8· 3 - 8 = 16 degrees of

freedom and obviously the test for this two-person situation provides a
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real check on the empirical ade~uacy of the model. In subse~uent chapters

we shall compare the fit of the model with these eight conditioning

parameters to the fit when it is assumed that cij ~ dij .

assumption, the maximum likelihood estimates of the

On this latter

are, of'

course, different from those given above; these new estimates are presented

below:

/'
nn + n12 + n21 + n22 + n31 + ll33 + ll51 + n53

cll ~

nl + n2 +n
3

+ll5

~
nn + n13+ n31 +n32 +n41 +n42+ n 71 +n73c12 =

nl + n
3

+ n4 + n
7

(2.6.16)

~
n21 + n23 + n51 + n 52 + n61 + n62 + llSl + nS3c21 =

n2 + n5 + n6 + llS

/' n41 + n43 + n61+ n63 + ll71 + ll72 + nSl + llS2
c22 =

n4 +n6 +J:l7 + llS
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